
©Copyright 2022

Steven Solomon Lyubomirsky

Compiler and Runtime Techniques for Optimizing Deep Learning
Applications

Steven Solomon Lyubomirsky

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2022

Reading Committee:

Zachary Tatlock, Chair

Luis Ceze

Kevin Jamieson

Program Authorized to Offer Degree:

Computer Science and Engineering

University of Washington

Abstract

Compiler and Runtime Techniques for Optimizing Deep Learning Applications

Steven Solomon Lyubomirsky

Chair of the Supervisory Committee:
Associate Professor Zachary Tatlock
Computer Science and Engineering

As the scaling and performance demands for deep learning systems have grown, system de-

signers have struggled to incorporate innovations at opposite ends of the system stack: more

varied and complex deep learning models and specialized hardware accelerators. New models

that use data structures and dynamic control flow to address new learning problems cannot

immediately benefit from previous system-level optimizations, which are defined over static

dataflow graphs. Meanwhile, many novel hardware accelerators for accelerating common

deep learning operations present unusual computing models and often require manual mod-

ification of applications to use, demanding expertise in both the deep learning domain and

in hardware. The challenges in adding support for accelerators in existing compiler stacks

slow development cycles and constrain deep learning systems’ capabilities and efficiency.

Following earlier work on the Relay IR for the TVM framework, this dissertation demon-

strates that system design problems in the deep learning domain can be approached by

formalizing deep learning models as programs broadly (rather than assuming a more specific

structure like a graph) and applying traditional compiler engineering techniques, simplify-

ing various optimizations and transformations. In particular, this work addresses the use

of runtime systems to support optimizations for dynamic deep learning models and on sys-

tematically supporting accelerators through the use of a formal software/hardware interface.

Traditional deep learning model optimizations have been conceived as transformations on

static dataflow graphs, but can be adapted to perform similar reasoning dynamically (and

hence make no assumptions about control flow) by performing similar reasoning in a run-

time system, guided by heuristics that depend on dynamically gathered information. This

work explores the specific example of Dynamic Tensor Rematerialization, which is an online

approach to the problem of gradient checkpointing (recomputing intermediate activations

instead of storing them to reduce the memory required for training) that achieves results

comparable to optimal static techniques but generalizes to arbitrarily dynamic models. In

addressing the problem of supporting accelerators in deep learning compiler stacks, this work

demonstrates that a formal software/hardware interface enables traditional compiler tech-

niques like instruction selection to be adapted for accelerators. Namely, this work presents a

methodology for implementing a compiler stack with extensible support for accelerators that

uses term rewriting to automatically discover opportunities to apply accelerator operations

and lays the foundations for extending formal verification to entire compilation stacks with

support for accelerators.

TABLE OF CONTENTS

Page

List of Figures . iii

Chapter 1: Introduction . 1
1 Motivation . 1
2 Deep Learning Definitions . 3
3 Differentiable Programming . 5
4 Runtimes for Dynamic Models: Dynamic Tensor Rematerialization 8
5 Supporting Diverse Hardware Back-Ends: 3LA 9
6 Organization . 10

Chapter 2: Related Work . 11
1 Reducing Memory Required in Training . 11
2 Compiling to Accelerators . 18

Chapter 3: Relay: A High-Level IR for Deep Learning Applications 28
1 Design of Relay . 28
2 Design Advantage: Type-Directed Relay Fuzzing 32
3 Summary . 46

Chapter 4: Runtime Techniques: Dynamic Tensor Rematerialization 47
1 Problem Description . 47
2 Design Overview . 49
3 Formal Bounds . 54
4 Heuristic Evaluation . 72
5 Prototype Implementation . 91
6 Summary . 99

i

Chapter 5: Semantics-Based Hardware Search: 3LA 100
1 Problem Description . 100
2 Overview . 105
3 The 3LA Methodology . 108
4 Prototype Implementation . 118
5 Case Studies and Evaluation . 122
6 Discussion and Future Work . 134
7 Summary . 137

Chapter 6: Conclusion . 139

ii

LIST OF FIGURES

Figure Number Page

3.1 A diagram of TVM’s architecture with Relay’s position marked. 28

3.2 An example of Relay code, namely an implementation of a recurrent neu-
ral network following Olah (2015b). This example employs many of Relay’s
features. @lin is a linear layer, applying nn.dense (dense matrix multipli-
cation) and elementwise addition. No tensor shapes are annotated, but Re-
lay’s type inference will infer the shape of the result using the operators’
type relations (matrix multiplication’s relation encodes broadcasting seman-
tics (Contributors, 2019) and addition’s relation is identity). @relu_cell de-
fines a ReLU (rectified linear unit) RNN cell, taking in a tuple of weights
and biases (the dots indicate tuple indexing) and returning a tuple literal.
@trained_relu_cell returns a closure (note the lexical scoping). Note the
parametric polymorphism employed in the definition of the List type and im-
plementation of @foldl, which are common in functional programming lan-
guages (and part of Relay’s standard library). @encode uses @foldl to imple-
ment a generic encoder RNN by folding a cell function over a list of inputs,
demonstating how Relay’s functional programming features can implement a
deep learning model in a modular, reusable manner. 30

4.1 (Top) Pseudocode for DTR’s basic logic (independent of heuristic), and (Bot-
tom) DTR’s sequence of events in an operator call. Note that PerformOp()
may make further recursive calls in order to rematerialize arguments. 50

4.2 Visualization of the state of memory for DTR with N = 200, B = 2d
√
Ne,

and heuristic he∗ . A value of 0 (black) indicates the tensor is evicted or
banished, 1 (red) indicates the tensor is a forward value in memory, and 1.5
(white) denotes an in-memory gradient tensor corresponding to the forward
tensor. The backward pass begins at the red vertical line; note the presence of
evenly spaced checkpoint tensors (red horizontal lines) that persist in memory
throughout the backward pass. Note also the recursive checkpointing behavior
visible in the early gaps of the backward pass, and finally the completely red
triangles of the later gaps, when there is enough free memory to avoid repeated
rematerialization altogether. 58

iii

4.3 An example construction of an adversarial graph. Gray tensors are in memory
(t0 must always be in memory). The initial tensor t0 has B paths descending
from it, so there is always some path from t0 with no resident tensors. The
adversarial construction chooses to place the next node at the end of such an
entirely evicted path. 70

4.4 Simulated results comparing different heuristics on various models, showing
the rate of computational slowdown for different budgets (fractions of the
original peak memory usage). The black area in each graph corresponds to
the memory required to store inputs and weights, while the gray area denotes
the single operator requiring the most memory to be live at once. The dashed
and dotted lines represent the last ratio before thrashing (≥ 2× slowdown)
and out-of-memory errors, respectively. All logs were produced by running
each model 50 times on a single input on a machine with an NVIDIA Titan
V GPU (CUDA 10.1, CuDNN 7.6.4) and a 16-core AMD Ryzen Threadripper
1950X on Ubuntu 18.04, logging the final “warmed-up” run. 85

4.5 Results for fixed c = e∗, varying s and m. 87

4.6 Results for fixed c = EqClass, varying s and m. 87

4.7 Results for fixed c = local, varying s and m. 87

4.8 Results for fixed c = no, varying s and m. 88

4.9 Results for the hDTR heuristic, comparing banishing and eager evictions. . . 89

4.10 Total storages accesses incurred by heuristic evaluations and metadata main-
tenance, compared across different memory ratios, for the 3 main h′DTR variants. 90

4.11 DTR’s overhead from operators is competitive with Checkmate’s, which uses
ILP to produce an optimal rematerialization schedule. This comparison ex-
tends Figure 5 in Jain et al. (2019) by adding the DTR simulator as a “solver”
that translates Checkmate’s Keras-based graph representation into the DTR
simulator’s representation. To produce this comparison, we modified Jain
et al. (2019)’s evaluation artifact because the PyTorch logs in Section 4.3.6
did not contain some information that past checkpointing techniques require
(such as which backward operators correspond to which forward ones). Also
included in the comparison (from the original experiment) are the Griewank
and Walther (2000) Treeverse algorithm and variants of the Chen et al. (2016)
checkpointing algorithm (modified to handle skip connections like those in
ResNet). 92

iv

4.12 We profiled the running time of our prototype for various models and memory
budgets on a machine with an NVIDIA Titan V GPU (CUDA 10.1, CuDNN
7.6.4) and a 16-core AMD Ryzen Threadripper 1950X on Ubuntu 18.04. The
red dotted lines correspond to trials that either ran out of memory or thrashed
(≥ 2× unmodified PyTorch’s time). Model batch sizes are given in parenthe-
ses. To ensure the accuracy of the DTR prototype’s profiling, we used Py-
Torch’s synchronous computation mode (see Section 5.1). Results (mean of
100 trials) are compared against unmodified PyTorch. “Cost compute” (com-
puting heuristic scores) and “eviction loop” (comparing scores over tensors)
correspond to overhead from the DTR runtime itself, which can be reduced
by a more efficient implementation. “Unprofiled time” is the remainder of the
time per batch; it may be due to runtime overhead from parts of PyTorch not
modified in the prototype, like the operator dispatch system. The large pro-
portion of unprofiled time in Unrolled GAN is likely due to its extensive use of
Python reflection. The budgets with asterisks were run with the random sam-
pling optimization (see Section 5.2) disabled, as sampling caused occasional
failures at those budgets. 93

5.1 Snippet of the FlexASR device driver (Tambe et al., 2021). Through MMIO
commands, the driver first stores input arguments, e.g., weights, in the accel-
erator’s internal buffer (lines 10 to 13). It then sets up the configuration such
as tensor dimension and vector size (lines 15 to 20). Finally, it triggers the
operation (line 23) and retrieves the result (starting line 26). 102

5.2 3LA compilation flow overview. Note that the ILA modeling and the valida-
tion of the IR-accelerator mappings are omitted from this figure. 107

5.3 FlexASR ILA model snippet. Lines 5-18 define the FlexASR ILA model,
its input and architectural states variables. Lines 20-32 shows an example of
an ILA instruction named “pe_0_cfg_mngr,” which corresponds to line 6 in
Figure 5.4 (c). In each ILA instruction, we specify its decode condition and
state update functions. For example, in this instruction, the decode condition
(line 24-25) is when there is write instruction at the top interface to the ad-
dress associated with the configuration of the PE’s management configuration.
Lines 27-32 show this instruction’s state update functions for the architectural
states. In this example, this ILA instruction models the behavior of storing
the arguments from the input data at its interface into the FlexASR config-
uration registers. From this example, we can see that the ILA instructions
provide an abstraction of the functionality of the accelerator corresponding to
the MMIO instructions at its interface. 110

v

5.4 IR-accelerator mapping for the FlexASR linear layer operation. This shows a
many-to-many mapping from Relay IR instructions to a sequence of FlexASR MMIO com-
mands. (a) A Relay linear layer consists of a linear transformation operation nn.dense,
followed by a bias addition operation nn.bias_add. (b) The compiler IR ILA instruction
has a one-to-one mapping to the compiler IR instruction. (c) The FlexASR ILA program
fragment in its assembly format: It includes: (1) writing instructions to transfer the data
into FlexASR’s memory; (2) setting up FlexASR LinearLayer configuration states, for ex-
ample, the instruction at line 5 sets the states of FlexASR layer sizing information; (3)
an instruction that triggers the FlexASR LinearLayer computation; and (4) reading data
out from FlexASR’s memory if needed. (d) The MMIO commands for FlexASR have a
one-to-one mapping to its ILA. 112

5.5 A simplified version of Figure 5.4 highlighting the verification tasks in the
IR-accelerator mapping for the FlexASR linear layer operation. 116

5.6 Prototype implementation of the 3LA compilation flow. 118
5.7 An illustration of the BYOC process, using an example similar to that in Chen

et al. (2021). 120
5.8 An illustration of how 3LA offloads 2D maxpooling to FlexASR’s temporal maxpooling

operation. Note that (b) does not contain a match for the left-hand side of the IR-accelerator
rewrite rule in (a). (c) is an equivalent rewritten IR program found by flexible matching,
containing four instances of the left-hand side of the IR-accelerator rewrite rule. The result
of the replacements is given in (d). Note that in this program, the initial store and the
final load are needed to communicate with FlexASR; however, the intermediate loads/stores
can be eliminated, since the output of one instance serves as input of another. (e) gives
a rewrite rule for removing intermediate loads/stores and (f) shows the result of applying
it. This program only performs a single (matrix) store at the start of the operation and
a single (matrix) load to read the output at the end of the operation. In the future, we
hope to generalize this example and consider memory organization in accelerators and data-
movement for optimizing data transfers. 135

vi

ACKNOWLEDGEMENTS

All the projects presented in this dissertation were supported in part by the Appli-

cations Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored

by SRC and DARPA. Numerous other members of the ADA Center provided my col-

laborators and me with valuable feedback on earlier versions of the work as well. My

participation in the ADA Center also greatly broadened my perspective on research

problems related to hardware design and applying accelerators.

Many students of the PLSE and SAMPL groups at the UW Allen School with

whom I did not directly collaborate nevertheless provided me with moral support and

at times advice, for which I am very grateful. Their ranks include Eunice Jun, Sam

Kaufman, Martin Kellogg, Chandrakana Nandi, Remy Wang, James Wilcox, Max

Willsey, Eddie Yan, Zihao Ye, Amy Zhu, and Bill Zorn; any perceived omissions from

this enumeration are unintentional.

Similarly, many faculty members with whom I did not directly collaborate on

research were also influential on my intellectual development and my beliefs about

the organization and design of research projects. Especially noteworthy in this regard

have been René Just, whose classes on research in software engineering and on research

methods directly guided the design of the evaluation in several of the projects of

this dissertation and directly inspired the Relay fuzzer project, and Dan Grossman,

whose eloquent articulation of the value of core programming languages concepts and

functional programming (to which I had a close-up view as a TA for his undergraduate

programming languages class) has helped ground my own views on the design of

vii

compilers for deep learning applications.

This work would not have been possible without the faithful efforts of my many

research collaborators. I had the honor to have worked with Jared Roesch, Marisa

Kirisame, Logan Weber, Josh Pollock, Ziheng Jiang, Luis Vega, Thierry Moreau,

and Tianqi Chen on various iterations of the Relay IR; with Edward Misback and

Michael Flanders on the Relay fuzzer; with Marisa Kirisame again, Altan Haan, Jen-

nifer Brennan, Mike (Deyuan) He, Jared Roesch again, and Tianqi Chen again on

Dynamic Tensor Rematerialization; with Gus Smith, Andrew Liu, Scott Davidson,

Joseph McMahan, Michael Taylor, and Luis Ceze on Glenside; and with Bo-Yuan

Huang, Yi Li, Mike He again, Thierry Tambe, Gus Smith again, Akash Gaonkar,

Vishal Canumalla, Gu-Yeon Wei, Aarti Gupta, and Sharad Malik on the 3LA method-

ology. (As well as, of course, my adviser, Zachary Tatlock.) We shaped our ideas,

designed our evaluations, and prepared presentations over many meetings—across

these hours of meetings, I learned countless technical and organizational lessons from

my colleagues. The time spent on these projects is rich in pleasant memories, though

even the difficult moments and setbacks from these projects have their own value.

I am especially grateful to my collaborators Jared Roesch and Tianqi Chen, to

whom I owe the fact of my turning my research interests toward the domain of deep

learning. They spent some time convincing me that my programming languages

background would be applicable to deep learning and guided my initial steps into the

literature on deep learning systems, helping me also to build an understanding of deep

learning. I am also grateful to them for introducing me to the TVM project (which has

since become part of the Apache Foundation), as working on a deep learning compiler

stack proved to be a very effective means of acquainting me with the engineering

challenges in that domain; it also gave me a very practical sense of how research ideas

can be implemented and evaluated in real systems and eventually adopted. Jared’s

viii

and Tianqi’s initial vote of confidence was vital in starting me down the path that

led to this dissertation.

Special acknowledgement is also due to some of the very talented undergraduates

with whom I had an opportunity to work closely: Mike He, Altan Haan, and Marisa

Kirisame (first as an undergraduate, then as a master’s student). Marisa’s encyclo-

pedic knowledge of the functional programming literature was the source of many

of our ideas for Relay and Dynamic Tensor Rematerialization; it was particularly

challenging and gratifying to adapt these methods to the domain of deep learning

systems. Mike and Altan also brought similar enthusiasm for functional program-

ming and were particularly eager to contribute to the implementation and evaluation

of Dynamic Tensor Rematerialization. The participation of all three of them in the

Dynamic Tensor Rematerialization project made for a particularly energetic collab-

orative environment and was certainly a very warm memory during the otherwise

sorrowful period of the coronavirus pandemic, when we could not work together in

person. For my part, I would like to think that I was able to provide these exemplary

students with at least some mentorship regarding the design, evaluation, and presen-

tation of research projects as well as on technical matters. I hope one day to read

their doctoral dissertations.

My faculty collaborators, including Michael Taylor and Luis Ceze of UW and Aarti

Gupta and Sharad Malik of Princeton University, gave me much perspective not only

on intellectual matters (especially when it comes to hardware—Sharad Malik’s under-

graduate logic design course still accounts for most of what I know about hardware!)

but also on organizational skills. I have had the privilege of directly witnessing many

different methods of managing research projects, assembling and running a research

group (the SAMPL group at UW), preparing publications, and interacting with pro-

fessional organizations—they all set a fine example, as do their students.

ix

The greatest acknowledgement of all is due to my doctoral adviser, Zachary Tat-

lock, who was present throughout all these efforts. I knew very little of research in

computer science when I began my graduate studies—perhaps he wouldn’t phrase it

like that, but I would say that Zach took a big risk in taking me on as a student! I

had done some projects on program verification in Coq and had the vague sense that

that was something I wouldn’t mind doing for longer, but getting papers published

takes more than just technical aptitude and gumption. Fortunately, I have had the

great fortune to have a very calm and patient adviser, who has been willing to take

the time to walk me through the steps of mapping out a research projects, writing

papers, and navigating the peer review process, including the particular challenges of

resubmission cycles. Zach seems to have a preternatural ability to identify gaps in

our research ideas and articulate precisely what we must clarify; I have never come

out of a meeting with Zach unsure of what to do next. Besides being willing to take

the time to explain matters to me that I always thought came as second nature to

my colleagues or helping to refine my research ideas, Zach has also encouraged me to

have confidence when articulating my ideas or voicing objections. A specific instance

is illustrated below: With Zach’s encouragement, I wrote a webpage detailing my ap-

proach to systems research projects (which boils down to “keep your eyes on the prize”

with respect to completing the evaluation). He called my doctrine “Lyubomirsky’s

Law,” and I obnoxiously Latinized it as Lex Lyubomiricus. While I was serious about

my claims (even if they weren’t peer-reviewed), I thought the webpage was the end

of it—but one day, Zach began one of our meetings by revealing that he had had it

carved in stone! I have never been more flattered in my life. I cannot think of a better

example of Zach’s confidence in his students. In addition to everything Zach has done

for me and his other students, he is also a social pillar of the PLSE group in particular

and the Allen School in general, often taking the initiative in organizing social events

x

and contributing to our organizational culture (his enthusiasm is contagious). He has

set a fine example of professionalism, and I consider it a privilege to have been his

student—I will always strive to mentor others as devotedly as Zach has mentored me.

xi

DEDICATION

This dissertation is dedicated to my maternal grandparents, Sulima and Isaak Khimish-

man, both of blessed memory, who would have loved nothing more than to have attended

my defense.

xii

1

Chapter 1

INTRODUCTION

1 Motivation

Many computing tasks which were once considered only distant possibilities for artificial

intelligence (AI) are today not only feasible but are, in fact, commonplace and used regularly

in day-to-day work and life. Such tasks include high-quality machine translation, facial

recognition, and increasing degrees of automation for driving tasks (among others). In

contrast to the techniques of what is now called classical AI, which generally operate on

an explicitly stated logical model of the world and apply inference rules, these tasks have

recently and most successfully been addressed using deep learning (DL) techniques, which

use data to learn the values of parameters needed to guide decisions like which pixels in

a 2D image correspond to a human face. For a famous example of the degree to which

DL techniques have succeeded in scaling in problems where classical AI has had difficulty,

consider the contrast between chess and Go. In chess, a program based on the Minimax

algorithm and α-β pruning techniques from classical AI defeated the human champion in

1997 (Campbell and Hoane, 1999). By contrast, Go has a much larger search space than

chess; automated techniques could not defeat human players until the DL-based approach

of AlphaGo Zero in 2017 (Silver et al., 2017), which used parameters learned from tens of

millions of simulated games (rather than manually specified heuristics) to guide choices of

moves. In recent years, DL techniques have been applied to address increasingly complex

tasks, some of which entail a degree of understanding the world, like assigning descriptive

text captions to images or answering questions in text. While many systems for these tasks

are research prototypes that are being evaluated against benchmarks, the latest advances

find their way quickly into practice, as with Google’s use of the BERT model (Devlin et al.,

2

2018) for processing search queries (Nayak, 2019). The rapidity with which innovations in

deep learning are adopted in practice highlights not only the impressive pace of progress in

that field but also the economic importance of many of the problems that DL techniques

help to address, particularly with respect to automating tasks historically done manually.

As DL applications become increasingly diverse and important, the infrastructure re-

quired to support deep learning at scale also increases in importance, presenting a variety of

engineering challenges. Depending on the application, DL systems may run at large scales

on large distributed systems in order to process vast amounts of data, or at smaller scales on

common consumer hardware like laptops and smartphones; they may also have to run at low

latency on low-powered embedded devices in applications where safety is important, such

as automated driving. At the largest scales, the power demands of DL applications have

demanded significant analysis of the environmental impact of running these systems and

accordingly efforts to mitigate said impact (Patterson et al., 2022). The increasing complex-

ity of DL applications and the diversity of the settings in which they are executed together

contribute to what is fundamentally a compilation problem: Having to design languages and

implement compilers capable of expressing the necessary computations and deploying code to

the appropriate devices, while satisfying numerous constraints on performance and resource

usage. Numerous specialized compilers have been and continue to be developed for DL ap-

plications, some providing end-to-end faculties for defining entire DL models and executing

them on the desired hardware and others intended to fulfill specific tasks, like optimizing

particular operators, and interoperate with other tools. Though these specialized tools are

undoubtedly necessary to meet the desired standards of performance, this dissertation con-

tends that the best way to support continued innovation in DL applications is, in a sense,

less specialization and more generality.

In particular, this dissertation will explore how expressing DL applications as general

programs allows for adapting traditional compilers techniques in order to address outstanding

problems related to new applications and settings, focusing on two specific problems:

3

1. Adapting static graph optimizations to dynamic DL models through the use of runtime

systems (in this case, for the problem of gradient checkpointing), and

2. Developing a methodology for compiling DL models and other applications to new

specialized devices through the use of an instruction-like software/hardware interface

and adapting traditional instruction selection techniques.

2 Deep Learning Definitions

This dissertation will focus on DL techniques as they pertain to supervised learning on

classification problems. While there are other learning problems, these problems are very

common in practice and provide simple parameters for the compilation problems discussed

later. This discussion is accordingly simplified, as it is intended to provide the context for

system-level optimizations discussed later rather than serve as a detailed or formal description

of how DL models are designed or motivated.

In a classification problem, a model is given an input from a domain and seeks to infer a

label that corresponds to some classification (such as whether a certain region of an image is a

human face). Deep learning provides a general approach for solving such problems if the user

has sufficiently many example inputs that have already been labeled. Namely, so long as the

inputs and labels can be interpreted numerically, a model can be specified as a function from

an input to a label, generally also taking parameters (also called weights) that do not depend

on the input. Modifying the model’s parameters allows for tuning what label is returned for

a given input, so the same model can be effective in different inference problems. A model

is specialized to a particular inference problem in a process called training, which entails

finding an optimal choice of parameters for a given set of labeled examples (the training

set). Training typically involves definining a loss function that corresponds to the error

between the model’s returned label and the actual label for a given example, so training can

be defined as finding an assignment of parameters that minimizes the loss. Optimization

algorithms like stochastic gradient descent (SGD) have proven very effective in practice at

4

finding good choices of parameters; notably these techniques require finding the gradient of

the model for a given input, so models must be differentiable. In SGD and related processes,

training is performed in multiple rounds by running inference on inputs, computing the loss

using the inference results and the true labels, and using the gradient of the loss (usually for a

batch of inputs) to adjust the parameters towards an optimal value (called backpropagation),

continuing until the loss reaches a fixed point.

The implementation of DL models and the training process involves large scales in many

regards, thus motivating the need for optimizations, including through the often exorbitantly

expensive route of developing specialized hardware. The numerical interpretations of many

problems often require that inputs be tensors of many dimensions; for example, problems in

computer vision usually treat input images as tensors of the RGB pixel values. Accordingly,

models must operate over large tensors, meaning that arithmetic operations over tensors

are computationally expensive (and performance bottlenecks). The parameters to these

operations are often also large tensors; a large model like Transformer uses over 100 MB

for storing parameters alone (Sohoni et al., 2019) and more recent models like Megatron-

Turing NLG (with half a trillion parameters) use over a terabyte (Smith et al., 2022). These

parameters must be updated during a training loop; achieving acceptable levels of accuracy

also typically requires a large training set, so training a model involves a very large number

of inference calls and parameter updates.

Hence, training is a very large up-front expense to using a DL model and when running

or training a model, tensor operations tend to dominate performance. Reducing these ex-

penses has been the focus of optimization efforts. In some cases, model designs incorporate

features that allow them to train more quickly (converge in fewer epochs), as in the case of

ResNet’s identity mappings (He et al., 2016b), which is a subject beyond the scope of this

dissertation. At the system level, there have been many efforts to produce highly optimized

implementations of tensor operations that exploit hardware-specific properties or structures

and parallelism within the operations themsleves, either writing these implementations by

hand, as in NVidia’s CuDNN library, or generating them from specifications using systems

5

like Halide (Ragan-Kelley et al., 2013), Tensor Comprehensions (Vasilache et al., 2018), or

TVM (Chen et al., 2018b). Conversely, hardware designers have approached the matter

of optimizing tensor operations from the opposite direction by implementing these opera-

tions in hardware to improve performance or energy efficiency, making use of parallelism and

data transfer that are seldom available in software; these new devices (called accelerators),

however, must be engaged from software, requiring DL libraries to support their interfaces.

Due to the computational intensity of DL training and inference, optimizations on dif-

ferent levels are very important for both practical use of models and research. While many

DL applications involve large online systems, where training may be performed in a data

center with a large hardware budget, many applications require inference to be performed

on low-power devices like mobile phones or microcontrollers in IoT devices, meaning that

performance may be very poor without optimizations. Within a data center, economies of

scale apply as well: Savings during training might mean using fewer machines or appreciable

differences in energy consumption. Even in a scaled-down research setting, training a model

to completion can still be expensive and the model’s effectiveness cannot be evaluated until

it has been trained. Developing and applying new optimizations for DL models thus has the

potential of improving the performance of many applications and enabling further research.

3 Differentiable Programming

The historical development of DL models from linear classifiers and neural networks (linear

classifiers with non-linear activation functions that feed into each other) meant that many

models are structured similarly. Namely, many models are described as static dataflow

graphs, which are directed acyclic graphs where nodes correspond to tensor operators and

edges correspond to input and output tensors. Some DL frameworks, like TensorFlow (Abadi

et al., 2016), have built such assumptions about model structures into their APIs. A graph-

like structure for models is easy to reason about and is also easy to automatically differentiate,

so accordingly many optimizations assume such a structure as well and are phrased as op-

erations on graphs. However, in principle, models are not required to be static dataflow

6

graphs of tensor operators: TreeLSTM (Tai et al., 2015) is one example of a model that de-

scends recursively down tree-structured input data, applying a function and passing hidden

state between the data. More recent examples of models with dynamic features include the

Neuro-Symbolic Concept Learner (NS-CL) (Mao et al., 2019) for visual question-answering

problems, which builds up a tree-like data structure representing a scene and processes it

recursively in its forward pass, and the aforementioned AlphaGo (Silver et al., 2017), which

combines learned parameters with a more traditional game tree search algorithm. Even if

the dynamic portions of the application do not themselves directly use learned parameters,

there are possibilities for co-optimization that DL compilers would be unable to pursue with-

out some ability to represent and reason about dynamic logic. The popular DL framework

PyTorch (Paszke et al., 2019a) has been widely adopted by DL researchers and practioners

precisely for its “eager mode” of execution: Tensor operations are presented as API calls

that are executed immediately (rather than first building up a graph and compiling it, as in

TensorFlow) and dynamic control flow can be handled entirely as ordinary logic in Python.

Indeed, TreeLSTM and the NS-CL were themselves implemented in PyTorch. PyTorch’s

ability to support dynamic control flow has also provided some opportunities for optimiza-

tion, as in the recent project TorchDynamo (Ansel, 2022), a JIT that is able to compile API

calls into PyTorch into optimized binary code while allowing dynamic logic to proceed as

normally in Python. Further possiblities remain for optimizing and supporting dynamic DL

models, as is discussed in the dissertation of my frequent collaborator Jared Roesch (Roesch,

2020).

This dissertation contends that describing DL models as programs in a general program-

ming language (e.g., as expressions with types), rather than as mathematical objects with

a specific (namely, graph-like) structure, facilitates the adaptation of general-purpose com-

piling techniques to the DL domain, simplifying many optimizations. This idea is rooted in

the concept of “differentiable programming,” the notion that DL models should be thought

of as programs in a language that, in addition to the features expected of general-purpose

programming languages, is differentiable (in the sense that it is possible to find the deriva-

7

tives of numerical programs in that language). A widely quoted 2018 Facebook post by

Yann LeCun popularized the term. LeCun notes that dynamic DL models formed “a new

kind of software by assembling networks of parameterized functional blocks and by train-

ing them from examples using some form of gradient-based optimization,” which could be

conceived as a program “very much like a regular progam [sic], except it’s parameterized,

automatically differentiated, and trainable/optimizable” (LeCun, 2018). This view is elabo-

rated upon by Erik Meijer in his FSE keynote address (Meijer, 2018), in which he encourages

DL researchers to describe models less as graphs but more as the composition of functions.

Meijer also observes that DL models could be written and described like ordinary programs

in general-purpose languages, as is supported by the earlier observations of TensorFlow de-

veloper Christopher Olah, namely the correspondences of various DL models to functional

programming combinators (Olah, 2015a,b).

This dissertation concerns itself with another consequence of the framing of “differentiable

programming:” Not only can DL models be written much like general-purpose programs;

they can also be optimized much like general-purpose programs. That is, problems of DL

system design and optimization can be presented as compilation and language-level problems.

Many recent tools have provided infrastructure for differentiable programming, including the

Lantern (Wang et al., 2018a) and Flux (Innes, 2018; Innes et al., 2017) libraries and support

for automatic differentiation in Swift (Wei et al., 2020). In particular, the work detailed in

this dissertation draws inspiration from the work others and I did on Relay, a domain-specific

language (DSL) for DL applications that is explicitly designed to be a general-purpose,

differentiable language, which is discussed in detail in Chapter 3. Namely, this dissertation

presents specific examples of adapting traditional compilers techniques to the domain of deep

learning, demonstrating how viewing DL models as “differentiable programs” (as the Relay

project does at every opportunity) allows for creating infrastructure that can better support

current applications as well as fostering emerging applications. The following two sections

detail the nature of these contributions.

8

4 Runtimes for Dynamic Models: Dynamic Tensor Rematerialization

While static analysis is attractive because it includes guarantees of generality and does not

impose overhead at runtime, dynamic analyses can be more precise because they can rely

on information gathered at run time and therefore draw further conclusions than their static

counterparts (Ernst, 2003). The lack of control flow in many DL applications makes static

analysis particularly favorable, since it allows for avoiding many of the complexities that

render static analyses on general programs less precise. However, many more recent DL

models do include dynamic control flow, precluding many of the past static analyses based

on dataflow graphs. Per the view of Ernst (2003) that dynamic analyses complement static

analyses, this dissertation proposes to address this shortcoming of static analyses for DL

by considering the alternative of dynamic analyses in the form of runtime systems. Because

operations on large tensors are expensive and dominate the execution time of DL models, this

provides many opportunities for sophisticated runtime systems for DL models: any auxiliary

information would likely be much smaller than a tensor and the analyses performed would

likely be much cheaper than a tensor operation.

The first contribution of this dissertation is a specific runtime system demonstrating this

principle. This system is Dynamic Tensor Rematerialization (DTR), in Chapter 4, which is

intended to generalize gradient checkpointing to more dynamic DL models by performing the

analysis dynamically. Past gradient checkpointing approaches seek to decrease the memory

required for training a DL model by recomputing intermediate values during backpropagation

instead of storing them, but these approaches assume that models lack control flow and

therefore that all recomputations can be scheduled in advance. DTR instead describes how

a comparatively lightweight runtime system can dynamically make decisions about which

intermediate values to free and later recompute, thereby allowing for memory savings on

more dynamic models, ultimately attaining results comparable to optimal static techniques.

In casting checkpointing, which has traditionally been implemented as a static analysis, as

a dynamic analysis, DTR also demonstrates many commonalities between checkpointing

9

and software caching techniques, as well as with the traditional optimization of register

rematerialization (Briggs et al., 1992).

5 Supporting Diverse Hardware Back-Ends: 3LA

The second contribution of this dissertation is a methodology for adding compilation support

for new accelerators, featuring automatic search for opportunities to apply these accelera-

tors’ operations, motivated specifically by the rise of accelerators for specific operations in

DL models. This methodology proceeds by modeling the semantics of applications and accel-

erators and searching over mappings of the model’s execution between the different available

devices. Compared to the present approach of building specialized compilation stacks for

new devices or requiring developers to manually call APIs specific to the accelerators (which

are presented as “hardware function calls”), this approach not only automates much of the

present process for incorporating accelerators into DL systems but is also easily extensible

with respect to both additional models and accelerators. We call this methodology “3LA”

and present it in Chapter 5.

The commonality with traditional compilers lies in the form of the mapping from high-

level applications (such as DL models) to the operations supported by accelerators. Specifi-

cally, accelerator operations in the 3LA methodology are represented as abstract instructions

using the Instruction-Level Abstraction (ILA) (Huang et al., 2018a), casting the problem of

invoking accelerator operations as one of choosing instructions appropriately corresponding

to semantics of the application, much as in traditional instruction selection (Blindell, 2016).

With a representation of the semantics of accelerator operations, it is possible to adapt many

techniques previously used in the compilers domain to accommodate the use of accelerators

in applications, as is realized in the prototype presented for the 3LA methodology, a DL

model compiler that automatically detects opportunities to invoke accelerators. The pro-

totype takes advantage of the ILA’s representation of the semantics to allow for the use of

formal verification techniques like bounded model checking to verify the correspondences

between accelerator operations and operations in the source language, which also under-

10

girds the use of term-rewriting techniques (namely equality saturation (Tate et al., 2011)) to

search for possible accelerator invocations by encoding correspondences between accelerator

operations and source language operations as rewrite rules. The system is easily extensible

as well, since new accelerator operations can be added simply by adding new rewrite rules

and verifying the correctness of the changes can be approached incrementally, since it would

be necessary only to verify the new rewrite rules. The fact that various general programming

languages apporaches like instruction selection, term rewriting, and formal verification tech-

niques combine to better facilitate the use of accelerators for DL applications without any

assumptions specific to the domain demonstrates the potential of the broad interpretation of

“differentiable programming.”

6 Organization

The remainder of this dissertation is structured as follows:

• Chapter 2 surveys related work on DL systems and compiling techniques, particularly

as related to DTR and 3LA;

• Chapter 3 discusses my past work on the Relay DSL and how it has informed the DTR

and 3LA projects;

• Chapters 4 and 5 provide detailed descriptions of Dynamic Tensor Rematerialization

and the 3LA methodology, respectively, as well as evaluation of their prototypes; and

• Chapter 6 gives concluding remarks.

11

Chapter 2

RELATED WORK

This chapter details past work that provides context for the specific techniques and

approaches that motivate and guide the work presented on dynamic checkpointing and com-

pilation to accelerators.

1 Reducing Memory Required in Training

Note: This section is partly adapted from the previously published work Kirisame et al.

(2021).

This section surveys many techniques used to reduce the amount of memory required

to traing DL models. Checkpointing is the a major focus of the work presented in this

dissertation, but other important techniques for reducing peak memory have also involved

swapping tensors between devices and modifications to models.

1.1 Checkpointing in Reverse-Mode Automatic Differentiation

The technique of checkpointing and the wider problem of saving memory while computing

derivatives stem from decades of research in automatic differentiation (AD). AD techniques

apply to training DL models (obtaining gradients for backpropagation), but AD has also

been used in numerous other domains for decades, including other optimization problems

and physical simulations.

As described in Baydin et al. (2015), AD refers specifically to automatically computing

the derivatives of numerical programs (programs whose inputs and outputs are numerical) by

producing a modified program. Baydin et al. (2015) specifically contrast the approach of AD

12

with other approaches of computing derivatives, namely manual, numerical, and symbolic

differentiation. Manual differentiation requires a programmer to reason about the arithmetic

of a given program and simply write another program that computes its derivative, which can

result in very efficient implementations but is error-prone and demands careful manual effort.

Numerical differentiation approximates derivatives for a numerical program by running the

program and using its outputs. This approach is automatic and conceptually simple but has

poor numerical stability and is computationally expensive. Symbolic differentiation applies

symbolic derivation rules to arithmetic expressions to produce transformed expressions that

compute their derivatives, thus automatically producing expressions that efficiently compute

derivatives. However, this approach requires input programs to be closed-form arithmetic

expressions and is vulnerable to exponential increase in the expression’s size due to the

symbolic application of the chain rule.

By contrast, AD approaches transform programs to compute derivatives alongside their

normal behavior, handling general programs and avoiding exponential blow-up in the pro-

gram size. However, AD-generated programs typically contain additional data structures

and computations. This is particularly the case in reverse-mode AD, the most common

form presently used, which Baydin et al. (2015) note Speelpenning (1980) first presented in

truly automatic form. Reverse-mode AD computes partial derivatives with respect to each

argument by applying the chain rule “in reverse” starting from the program’s output. This

process is usually implemented by running a “forward” sweep through the program (running

it normally) while keeping a “tape” (a record of each computation performed with its argu-

ments), computing partial derivatives by tracing the tape in reverse order and propagating

intermediate values’ partial derivatives one step at a time. This avoids exponential blowup

of expression sizes, but requires additional computation and can incur considerable memory

costs. As Dauvergne and Hascoët (2006) discuss, values needed in computing derivatives

(i.e., those used more than “linearly”) must remain in the tape from when they occur in the

forward sweep until their entry is reached in the reverse sweep. Hence, in the worst case,

the tape will store values for each operation in it, using space proportional to the number of

13

operations in the forward sweep.

Checkpointing is an optimization for reverse-mode AD that reduces the peak memory

usage of the tape, as the dataflow analysis of Dauvergne and Hascoët (2006) illustrates.

Checkpointing in reverse-mode AD proceeds by marking points in the tape called snapshots :

Forward computations would be replayed to recompute the values needed at the next snap-

shot, saving (checkpointing) only the values needed to begin replaying computations and

freeing the rest. Taking many snapshots would thus result in more values being saved but

fewer computations, while taking few snapshots would require more computations. Griewank

(1994) is one of the first publications1 to note that it is possible to bound the computation-

memory tradeoff in checkpointing for reverse-mode AD. Griewank (1994) introduces an al-

gorithm called Treeverse for marking snapshots by a binomial partitioning scheme that used

O(log(T)) times more additional computations to compute gradients in O(log(T)) memory,

for a tape of length T in the unmodified program. Griewank and Walther (1998) provide a

more detailed description of the Treeverse algorithm as well as empirical evaluation of the

algorithm’s performance. Note, however, that Treeverse’s tape segmentation scheme requires

knowing the length of the tape in advance and thus cannot save memory on programs with

unbounded loops.

Hascoet and Araya-Polo (2006) describe certain design choices in the checkpointing for

the Tapenade AD tool that allowed it to achieve sublinear memory overhead and support

arbitrary programs, albeit suboptimally. Hascoet and Araya-Polo (2006) note that there

are situations where the Treeverse algorithm performs poorly in practice because the costs

of taking snapshots and different operations in code can vary greatly. Among the reasons

for the poor performance are that Treeverse makes no cost considerations between different

operations when selecting snapshots and that the overhead of managing snapshots can be

expensive in practice. As a remedy, the Tapenade AD tool described by Hascoet and Araya-

1Grimm et al. (1996) cites a 1991 preprint by John Abbott and André Galligo called “Reversing a Finite
Sequence” as also proving a bound on the tradeoff; however, I could not find a published work from those
authors by that title.

14

Polo (2006) allows for user annotations to denote particularly expensive operations and

employ different strategies (e.g., marking an entire region as cheap enough to recompute

that it should never be stored in the tape). Additionally, Tapenade provides heuristics for

handling loops with non-constant bounds, including options like snapshotting before or after

given loops or snapshotting every N iterations. Checkpointing by the method of Hascoet

and Araya-Polo (2006) thus requires iterative experimentation and manual intervention to

achieve the best performance.

Siskind and Pearlmutter (2018) describe a checkpointing technique capable of handling

arbitrary programs that does not require manual configuation as in Hascoet and Araya-Polo

(2006). The checkpointing scheme of Siskind and Pearlmutter (2018) is built into a differen-

tiable programming language (in the style of Pearlmutter and Siskind (2008)) and relies on

three capabilities provided as language primitives: interrupting an operation, saving an in-

terrupted operation to a “capsule,” and resuming a capsule. Siskind and Pearlmutter (2018)

describe an algorithm for creating capsules in an arbitrary user program that corresponds to

creating snapshots in checkpointing, allowing for these points to be chosen at any execution

point, including within loops. The interruption and capsule abstractions can moreover be

implemented using continuations, thereby allowing for producing compiled programs using a

continuation-passing style transformation. The algorithm’s implementations did not surpass

the performance of Tapenade in practice but allows for specifying finer-grained checkpointing

policies than Tapenade.

1.2 Checkpointing in Deep Learning

Checkpointing techniques from general reverse-mode AD have been adapted to the particular

considerations of training DL models. Because of the monolithic nature of tensor operations

within DL frameworks, these expensive operations provide natural boundaries for taking

snapshots. Additionally, the fact that most DL models have been represented as static

dataflow graphs means that approaches similar to that of Treeverse are indeed viable, since

these do not have unbounded loops. The expense of tensor operations and the sizes of tensors

15

also means that the size of the instructions in a snapshot and the overhead of invoking

a snapshot (typically a function pointer) are comparatively insignificant, eliminating the

performance issue Hascoet and Araya-Polo (2006) identify in AD on scalars. Chen et al.

(2016) implement a Treeverse-like algorithm specific to dataflow graphs. This algorithm,

called Gradient Checkpointing, divides a neural network into segments that correspond to

intervals to recompute during backpropagation, analogous to snapshots in general AD. Chen

et al. (2016) define a segmentation scheme that can train a feedforward network of N layers

using O(
√

(N)) memory with one extra forward pass (O(N) tensor operations). Chen et al.

(2016) also provide a greedy algorithm for selecting segments on any given memory budget,

training an N -layer network with O(log(N)) memory with O(N log(N)) additional tensor

operations (similar to the bound achieved by Treeverse).

Several other works have followed the approach of Chen et al. (2016) in developing check-

pointing schemes specific to dataflow graph models. Two recent examples are Jain et al.

(2019) and Kusumoto et al. (2019). Jain et al. (2019) reduce the problem of selecting snap-

shots in a DL model to integer linear programming (ILP). Their tool, Checkmate, generates

ILP constraints corresponding to the computation and storage costs of different segmenting

choices and uses an ILP solver to finding provably optimal (with the fewest recomputations)

snapshots for a given budget. The subsequent work Shah et al. (2021) similarly uses an ILP

encoding but also allows for choosing between different implementations of tensor operations

according to the cost model to optimize for both memory use and computational overhead.

Kusumoto et al. (2019) provide a generalization of the segmenting approach of Chen et al.

(2016), defining it for arbitrary directed acyclic graphs (Gradient Checkpointing assumes

each layer can only depend on the layer immediately before it), and an efficient dynamic

programming algorithm for quickly approximating an optimal choice of snapshots.

Gruslys et al. (2016) provide a checkpointing scheme specific to recurrent neural networks

(RNNs), which feature dynamic control flow. An RNN loops over a sequence of inputs,

applying a cell function to an input and a hidden state. The cell function produces a

corresponding output as well as a new hidden state to propagate to the next iteration.

16

Gruslys et al. (2016) adapt a Tapenade-like approach to the loops, proposing schemes for

taking snapshots both between loop iterations (saving the hidden state) and within the RNN

cell itself (segmenting it as in Chen et al. (2016)), also proving bounds for the recomputations

these algorithms perform on a given budget. The resulting algorithms perform similarly to

Gradient Checkpointing on “unrolled” RNNs for the same O(
√
N) budget but use fewer

recomputations on smaller budgets.

DTR differs fundamentally from those approaches because it handles arbitrary dynamic

control flow in models (making no assumptions about the model’s structure, like Gruslys

et al. (2016)) and operates online, giving it access to dynamically gathered information. In

principle, a static checkpointing technique could be applied to a dynamic model “just in time”

by unrolling the model on the fly, but some static analyses (like an ILP solver) can be too

expensive to run each epoch. Unlike static approaches, however, dynamic planning introduces

overhead at run time, which limits the analyses that DTR’s heuristics can feasibly perform.

Note that the Chen et al. (2016) greedy scheme and the GreedyRemat baseline in Kumar

et al. (2019) are similar to DTR in that they greedily place checkpoints using a heuristic

(albeit statically). However, their heuristics only use the sizes of tensors.

1.3 Deep Learning Memory Managers

Other work has enable the training of DL models on lower memory budgets by swapping ten-

sors between GPUs or to host RAM. Huang et al. (2020) use a genetic algorithm to plan swaps

between devices on static computation graphs. Capuchin by Peng et al. (2020) and Superneu-

rons by Wang et al. (2018b), like DTR, use runtime systems and incorporate checkpointing

as well. Capuchin’s checkpointing phase, which resembles DTR’s, uses dynamically gath-

ered information for checkpointing; it performs a single batch without checkpointing (only

swapping) and uses the costs it measures to determine where to set checkpoints. However,

Capuchin’s and Superneurons’s checkpointing schemes assume a static model architecture

(inferred from an initial profiling batch), which they use to plan recomputations in advance.

Rajbhandari et al. (2020) present ZeRO (part of the DeepSpeed framework), another system

17

designed to reduce peak memory during training. ZeRO is designed for large distributed

systems and focuses on partitioning models across devices (aiming to minimize the amount

of replicated state needed to achieve this model parallelism), offloading activations to CPU

when necessary. The approach of partitioning reduces the overall peak memory across the

devices due to sharing, at the expense of some communication.

These works highlight that swapping and rematerialization are complementary approaches,

raising the question of whether DTR can be combined with swapping while maintaining per-

formance, since swapping systems like Capuchin rely on interleaving communication and

computation at a low level. One possibility would be to assume a fixed swapping sched-

ule and use DTR to replace the rematerialization schemes used by systems like Capuchin

(perhaps given a constraint like treating values to be swapped out as unevictable). An-

other intriguing possibility would be to use swapping as a form of “eviction” in DTR, where

the “cost” for swapped-out values would be the communication time. Swapping presents

interesting tradeoffs with rematerializations since it may scale better than some tensor op-

erators. However, incorporating swapping into DTR’s online approach presents the problem

of efficiently overlapping computation and communication since the runtime would need to

guarantee that a computation scheduled concurrently with a swap would not need to swap

values back in. This could greatly complicate planning (e.g., requiring some lookahead to

avoid missed swapping opportunities) and would be fertile ground for future work. The more

recent work DELTA by Tang et al. (2022), which cites the original presentation of DTR, ex-

plores these possibilities by using a heuristic to decide on the fly whether a given tensor

should be evicted or swapped to CPU, making use of prefetching and preemptive evictions

(evicting after most memory is occupied, even if the current allocations still succeed) to allow

for overlapping communication and computation.

1.4 Memory-Efficient DL Model Modifications

Some recent work manually modifies DL models to perform similar computations using

less memory, which may be used alongside checkpointing and swapping approaches. One

18

example is the use of reversible layers, which enable recomputing a forward value during

backpropagation using the result of the following layer, an approach rather similar to general

checkpointing. The activations for reversible layers do not need to be stored so long as

the activation for the next non-reversible layer is stored, thereby building a computation-

memory tradeoff directly into the model. Gomez et al. (2017) present RevNet, a variant of

ResNet with reversible residual layers that achieves nearly identical accuracy to a ResNet

with a comparable number of layers but only uses a constant amount of storage (with a

linear amount of additional forward computations). Kitaev et al. (2020) present Reformer,

a Transformer variant which also uses reversible residual layers to save memory. While the

use of reversible layers in these models requires manual changes to the models, future work

can explore how these can potentially be used alongside DTR.

2 Compiling to Accelerators

Note: This section is partly adapted from the previously published work Huang et al. (2022).

The 3LA methodology presented in Chapter 5 is the first work to provide general, ex-

tensible support for accelerators within a compiler stack, but other works have supported

specific classes of accelerators. Additionally, the 3LA methodology relies on past work in

hardware verification, software/hardware co-design, and term rewriting (particularly as ap-

plied to domains similar to deep learning).

2.1 Hardware Verification

The 3LA methodology relies at its core on having a representation of the semantics of ac-

celerator operations. The Instruction-Level Abstraction (ILA) introduced in Huang et al.

(2018a) provides a means for uniformly reasoning about hardware devices of diverse capa-

bilities, motivated explicitly by the development of accelerators for deep learning and other

applications. The ILA enables reasoning about accelerators in terms of the operations they

provide (treated as abstract instructions) by providing a functional specification for each,

19

defining the instructions in terms how they affect the architectural state of the device. In

the ILA, a device specification is given in terms of an abstract machine that fetches, decodes,

and executes a sequence of instruction opcodes with some initial state and inputs, intended

to correspond to the programming model of general-purpose processors (directly analogous

to the Instruction Set Architecture, ISA). Thus a device is specified by defining opcodes, a

procedure for fetching an instruction based on the opcode and state, a decode function that

determines if the instruction is valid, and a function that computes the next state based

on the current state and instruction. The ILA’s state is intended to model the contents of

registers and the device’s other buffers, so the state is typically a collection of bit vectors and

instructions’ effects are expressed as changes to these bit vectors. ILA specifications can be

recursive, allowing for specifying a set of micro-instructions and defining macro-instructions

as a sequence of micro-instructions.

Huang et al. (2018a) note that ILA specifications are effectively labeled state transition

systems and that their specification allows for specifying parallel hardware behavior as a

sequence of instructions, “a key enabler for system design and verification” (emphasis theirs).

The representation of program state in terms of bit vectors allows for ILA states and state

transitions to easily be lowered to SMT and thus for verifying conditions on ILA states

using bounded model checking. Huang et al. (2018a) presents verification case studies that

involve proving equivalence between two different ILA specifications for the same device (one

modeling each instruction monolithically and the other as a sequence of micro-instructions)

and an ILA specification and RTL model (by generating an ILA specifiction from the RTL).

Another case study used ILA specifications to generate faithful cycle-accurate simulators.

Huang et al. (2019) present in further detail a tool called ILAng for constructing ILA

specifications, translating ILA instructions into hardware descriptions (e.g., in Verilog), and

specifying verification conditions to check between ILA instructions, with a case study that

verifies instruction-by-instruction equivalence of two specifications of an AES accelerator.

Huang et al. (2018a) claim that ILA is the first language for specifying and reasoning

about accelerators using a sequential instruction abstraction. However, they note that pre-

20

vious high-level hardware synthesis tools did introduce the notion of specifying hardware in

terms of state changes, particularly Bluespec (Nikhil, 2004) (which provides an operational

semantics), but they lacked a uniform representation for both general-purpose processors

and accelerators. ILA’s instruction-based specifications generalize previous verification ef-

forts for general-purpose processors like Jhala and McMillan (2001), which also proceed using

instructions.

2.2 Equality Saturation

Another important component of the 3LA methodology is the use of pattern matching and

term rewriting to identify opportunities to identify possible accelerator operations in an

input program, potentially choosing between different possible operations. Note that this

section focuses on non-destructive term rewriting because it avoids issues of phase ordering or

having to devise a canonical representation; in the context of compiling to accelerators, a non-

destructive approach is useful because it ensures that no opportunities to invoke accelerators

can be missed (as may happen in a situation involving phase ordering with destructive

rewrites). However, there are many works, such as Newcomb et al. (2020) and Liu et al.

(2022a), that successfully use destructive term rewriting for compilation and optimization

purposes and avoid phase-ordering issues either by requiring rewrite rules to be manually

applied or including carefully defined invariants that rewrite rules must uphold.

Searching over equivalent programs as a means of producing optimized code is the basis

of the “superoptimizer” in Massalin (1987). This early superoptimizer takes a source program

and uses a brute force search over all assembly code sequences up to a threshold of length

and returns the shortest sequence that is equivalent to the source program (using either a

probabilistic test or a boolean satisfiability test). The search space for this superoptimizer

grows very quickly, so this approach can only generate very short sequences of instructions;

Massalin (1987) intends it primarily for peephole optimizations.

Joshi et al. (2006) refine the approach of Massalin (1987) with an improved method of gen-

erating search candidates (avoiding many clearly unpromising programs, for which Massalin

21

(1987) only offers heuristics) and also generated programs that are known to be equivalent

by construction instead of having to check equivalence. Joshi et al. (2006) present a tool

called Denali, which uses algebraic identities between program operations as rewrite rules

and identifies possible substitutions. In order to search efficiently over these possible rewrit-

ings, Denali uses a data structure introduced by Nelson (1981) called an e-graph, in which

a program is represented as a DAG of terms and rewrite rules can be represented by the

addition of nodes and edges corresponding to new instructions that compute equivalent val-

ues to a given subtree. An e-graph thus allows for non-destructively expressing all possible

applications of rewrite rules, which can compound by taking advantage of other rewrites in

the graph. Denali proceeds by applying rewrite rules until the e-graph no longer changes,

thereby deriving all possible rewrites. Denali finally chooses an optimal rewriting by reducing

the equivalence classes in the graph to SAT queries corresponding to the number of cycles

needed to perform the corresponding operation, finding the largest k for which a query of

the form “the encoded program cannot be computed in k cycles” is unsatisfiable.

Tate et al. (2011) develop an approach inspired by that of Joshi et al. (2006) that allows

for optimizations to be performed across larger program structures, rather than within loop

bodies or short segments of code (Denali’s intended use), in addition to validating transfor-

mations performed by program optimizers. The approach of Tate et al. (2011) defines an IR

for programs called a “Program Expression Graph” (PEG), an SSA-inspired representation

of computations as dataflow graphs with control (Φ) nodes, and an e-graph over PEGs called

an E-PEG that includes equality edges between equivalent sub-PEGs, allowing rewrite rules

to be applied similarly. Because PEGs include control nodes, it is possible to define rewrite

rules that act on loops and other structures, which Tate et al. (2011) develops in great de-

tail. Crucially, Tate et al. (2011) notes that local transformations on an E-PEG can result in

cascading non-local effects in terms of the potential code generated from the E-PEG, so the

representation efficiently accumulates all possible rewrites and can examine transformations

of large parts of a program. The algorithm described applies rewrite rules to an E-PEG until

no new rules can be applied, thereby saturating the E-PEG, which is signified by the name

22

“equality saturation.”

Willsey et al. (2021) present egg, a library providing a general and efficient library for ap-

plying equality saturation. egg is able to improve its performance in part due to a technique

that Willsey et al. (2021) call “rebuilding,” which involves allowing invariants to be temporar-

ily violated when merging e-classes (transitive closures of nodes connected by equality edges)

before later restoring them after all the merges are complete. (Crucially, egg separates the

“read” phase, for detecting rule matches, from the “write” phase, in which new nodes and

edges corresponding to rewrites are applied. This means that invariants may be violated

in the write phase so long as they are restored before the next read phase, preventing in-

correct applications of rewrite rules.) Separating the enforcement of invariants from adding

and merging e-classes results in large speedups by eliminating repeated checks. egg also

allows for domain-specific reasoning to be applied in the form of analyses on e-classes, which

are functions that potentially modify e-classes (generally through the addition of nodes).

Analyses in egg allow optimizations like constant folding to be implemented directly and

act faster compared to relying on multiple rounds of rewritings to produce such behavior

“emergently.” egg has been used by many subsequent works involving equality saturation,

including Ruler (Nandi et al., 2021), a system for inferring rewrite rules, and domain-specific

compilation tools involving rewrite rules, which will be discussed below.

2.3 Term Rewriting for Tensor Programs

The use of term rewriting and equality saturation in the 3LA methodology relies on having a

program representation over which rewrite rules can be defined. Many works, such as Nandi

et al. (2020) for 3D model designs, have defined domain-specific representations intended to

faciliate term rewriting. Though the broader 3LA project as described in Chapter 5 is not

intended to target compilers of any one domain, in the DL context, the programs of interest

operate over large tensors. Several past works have applied term rewriting and equality

saturation for optimizing tensor programs and linear algebra kernels.

The Halide compiler for image processing kernels (Ragan-Kelley et al., 2013) is widely

23

used and is very well-known for its separation of “compute” (a definition of how each ele-

ment of the output tensor should be computed based on elements of the input tensors) and

“schedule” (the iteration order for elements), allowing for loop optimizations like reorder-

ing, unrolling, and fusion to be defined as schedule transformations. Note that the same

approach has also been adopted by the TVM DL compiler stack (Chen et al., 2018b), since

tensor operations in DL are in many regards similar to the image processing kernals that

Halide optimizes. Halide includes a term-rewriting system for optimizing kernels (especially

schedules), which is described extensively in Newcomb et al. (2020); the approach uses de-

structive rewrites with numerous invariants to ensure the rewrite system always terminates.

These rewrites yield strong performance gains in practice. While Halide and many similar

compilers attain success using destructive rewrites, SPORES (Wang et al., 2020) is an opti-

mizing compiler for linear algebra kernels (also closely related to image processing) that uses

equality saturation. SPORES relies on transforming linear algebra kernels into relational

algebra, which has a smaller set of axioms and requires only thirteen rewrite rules, ulti-

mately resulting in faster compilation and superior performance compared to the destructive

rewriting baselines.

Note that while Halide uses term rewriting for simplifying arithmetic expressions or

verifying that preconditions for optimizations have been met, Halide’s scheduling directives

like loop tiling and fusion are not themselves implemented using term rewriting. By contrast,

Liu et al. (2022a) present a term rewriting system for tensor computations that is capable

of implementing Halide’s scheduling transformations through rewrites. Their representation

is purely functional and relies on pipelining with a special tensor comprehension operator,

which creates a tensor by mapping a function over indices; they formalized the language in

the Coq proof assistant and proved the correctness of the rewrite rules.

In addition to optimizing individual linear algebra kernels like Halide and similar works,

some DL compilers also apply rewrite-based optimizations over entire DL models; these are

usually called “graph substitutions,” since the models themselves are represented as dataflow

graphs, where nodes are tensor operators. Jia et al. (2019) present TASO, a DL graph

24

optimizer that derives new graph substitutions through enumerating all operator graphs

up to a small size bound, filtering out potential substitutions by testing if the two graphs

produce the same result on random inputs, and finally verifying the most promising generated

solutions against a set of 43 correctness properties using an SMT solver. The later work of

Yang et al. (2021) applies equality saturation (implemented using egg) to the approach of

TASO, yielding a tool called TENSAT that derives graph substitutions from a set of smaller

graph rewrite rules (adapted from TASO’s 43 correctness properties). TENSAT finds graph

substitutions much more quickly than TASO because the enumeration is handled by the

e-graph, hence avoiding any invalid substitutions and obviating the need for random tests.

The previously discussed works have considered widely available programmable devices

(namely, CPUs and sometimes GPUs), but other works have also used term rewriting to

compile code to accelerators. One such work is Diospyros (VanHattum et al., 2021), a

compiler for linear algebra kernels to digital signal processors (DSPs), which, like many

accelerators, provide vectorized instructions (individual instructions operating over entire

vectors) and attain the best performance when loops in the source program are compiled

to single vectorized instructions. Diospyros uses symbolic evaluation to extract abstract

mathematical definitions of imperative input programs, converts those into a DSL of vector

expressions, and uses equality saturation to explore the space of possible transformations

within the vectorized DSL. The compiler includes a core set of rewrite rules likely to be useful

in general, as well as rewrite rules specific to individual DSPs, which have differing buffer

sizes and other hardware properties. The final result of the equality saturation (extracted

using a cost function based on minimizing data movement) is then converted into device-

specific C++ code; in the case of Diospyros, the extracted benchmark code closely matched

the performance of previous baselines or exceeded it.

The tensor program DSL used in the 3LA prototype is Glenside (Smith et al., 2021),

which is designed to faciliate equality saturation over tensor programs (implemented using

egg), especially for the task of lowering code to accelerators. Like the kernel language of

Liu et al. (2022a), Glenside defines tensor operations in terms of functional combinators

25

(such as maps and folds), but crucially restricts expressivity by avoiding bindings (wherever

names are introduced, such as function arguments and let bindings), since tracking scope

for names is difficult to perform efficiently in equality saturation. Despite these limitations,

many common tensor operators can be concisely expressed in Glenside thanks to its core

abstraction of access patterns, a feature of Glenside’s type system that allows for easily

expressing iteration domains over tensor indices without the use of bindings. An access

pattern is a tuple of two tensor shapes (D, I), where D defines the dimensions of iteration

and I defines the dimensions of computation. In particular, for each index in D, there is a

tensor with shape I that can be processed; for example, a tensor of shape (2, 3, 4) can be

represented with (among others) the access patterns ((2), (3, 4)), ((2, 3), (4)), or ((2, 3, 4), ()).

The first of these access patterns corresponds to accessing two tensors of shape (3, 4) (i.e.,

a 3× 4 matrix) in sequence (i.e., arranged as a vector of length 2); the second, to accessing

vectors of length 4 laid out like a tensor of shape (2, 3); and the third, to accessing scalars

laid out like a tensor of shape (2, 3, 4) (i.e., iterating over an ordinary tensor of that shape).

Using access patterns, many functional programming combinators can be restated in ways

that make it easy to operate over tensors and still allow the combinators to easily compose.

Glenside includes rewrite rules over these combinators and other built-in operations, which

allows for many optimizations to be derived without explicitly defining them. In particular,

Smith et al. (2021) use equality saturation to discover opportunities to apply an accelerator,

namely by defining accelerator operations as Glenside expressions (adding a rewrite rule

of the form expression =⇒ accelerator_operation), then using equality saturation to

discover if there is any sequence of rewrites that yields uses of that operation. Smith et al.

(2021) perform a case study with a rewrite rule for a systolic array (the TPU is a notable

example) operation, which results in mapping a convolution operation to a systolic array

by rederiving the im2col transformation (Chellapilla et al., 2006); the use of Glenside for

“flexible matching” in Chapter 5 is a generalization of this case study.

26

2.4 Software/Hardware Co-design

Recent work on accelerator generation and integration (Bahr et al., 2020; Truong et al., 2020)

has explored adding support compiler flow for specialized Coarse-Grained Reconfigurable

Array (CGRA) accelerators in Halide. That work composes an impressive array of custom

tools to generate and verify specialized CGRA accelerators and also map Halide program

fragments down to accelerator invocations. HeteroCL (Lai et al., 2019) also provides a similar

custom flow. By contrast, the 3LA methodology is designed to support software/hardware

co-design by mapping from high-level DSLs and near-arbitrary accelerators; because of the

flexibility of the ILA, the 3LA methodology is applicable to a broader class of compilers and

accelerators.

2.5 Pattern Matching Accelerator Calls

In principle, many DSLs allow for supporting custom accelerators via bespoke translations

from DSL operators to specific accelerator APIs, e.g., as in TVM’s built-in support for

VTA (Moreau et al., 2019). TVM’s BYOC interface (Chen et al., 2021) eases incorporating

custom accelerators by performing syntactic pattern matching to offload computations via

user-provided code generators. However, BYOC leaves all matters of code generation to the

user, while 3LA provides more structure to code generation via the ILA. In particular, the

ILA provides useful simulation and verification capabilities. Additionally, BYOC’s pattern

matching cannot search the space of programs equivalent to the input, limiting the number

of potential accelerator invocations compared to flexible matching in our 3LA prototype.

The MLIR framework (Lattner et al., 2021) provides a rich metalanguage and numerous

tools for developing, optimizing, and translating between custom compiler IRs, but does

not inherently provide direct support for 3LA’s features, though it would be possible to do

so using custom MLIR dialects. Past work has also explored rewrite-based techniques for

automatically inferring instruction selection passes between ISAs (Ramsey and Dias, 2011).

Rewriting in 3LA instead operates on a high-level DSL to expose opportunities to invoke

27

code generators, rather than performing low-level code generation directly.

2.6 Validating and Verifying Accelerator Calls

Tools like Verilator (Verilator, nd) and Cuttlesim (Pit-Claudel et al., 2021) enable efficient

RTL-level simulation, but do not provide reusable interfaces or flexible matching to incor-

porate custom accelerators into existing compiler flows. Formally verified compilers such as

CompCert (Leroy, 2006) and CakeML (Kumar et al., 2014) can rigorously establish end-to-

end equivalence from high-level source code down to assembly for various CPU back-ends via

machine-checkable proofs, but currently do not provide a general approach for integrating

new accelerator support and provide no support for custom numerics. By contrast, 3LA

enables validating accelerator mappings via end-to-end simulation handling custom numer-

ics and formally verifying individual rewrite rules from compiler IR patterns to accelerator

invocations.

28

Chapter 3

RELAY: A HIGH-LEVEL IR FOR DEEP LEARNING
APPLICATIONS

My past work on the design, implementation, and evaluation of the Relay IR informed

the motivation and approach of the primary subjects of this dissertation. While Relay itself

is not a subject of this dissertation, the process of designing and presenting the language as

well as the subsequent work in maintaining it in the context of the Apache TVM project,

which has given Relay many industrial and academic users, have shaped my understanding

of “differentiable programming.” Hence, this chapter provides further background on the

motivations and design of the Relay IR.

1 Design of Relay

Relay is the front-end intermediate representation (IR) for the TVM (Chen et al., 2018b)

deep learning compilation stack, illustrated in Fig. 3.1. It is used to represent models di-

rectly defined by users or converted from interchange formats like ONNX and Keras. Relay

Figure 3.1: A diagram of TVM’s architecture with Relay’s position marked.

29

programs can, in turn, be deployed to various platforms by the lower levels of TVM: The

programs can be interpreted through a “graph executor” runtime, compiled into bytecode

for a virtual machine (Shen et al., 2021), or compiled directly into LLVM, CUDA, or C (for

microcontrollers). The supported back-ends for Relay programs also include built-in support

for deployment the VTA accelerator (Moreau et al., 2019) and support for user-provided ac-

celerator extensions (Chen et al., 2021). The AutoTVM (Chen et al., 2018c) mechanism or

successors like Ansor (Zheng et al., 2020) can also be used to optimize the tensor operators

within a Relay program to the given hardware.

The design of Relay, introduced in Roesch et al. (2018) and described in further detail

in Roesch et al. (2019) and Roesch (2020), explicitly takes inspiration from the discourse of

“differentiable programming,” providing an expressive language in order to separate low-level

implementation details from the high-level descriptions of computations. Since the design

of Relay has been extensively documented and described in the aforementioned works, I

include an example of Relay in Figure 3.2 rather than reproduce the operational semantics

and typing rules in full. In particular, in order to enable the greatest generality for expressing

DL applications, Relay expresses models as programs in a functional programming language

much resembling SML (Milner et al., 1997), with many features expected from a general-

purpose programming language, such as recursion, first-class functions, and algebraic data

types like lists and trees. Unlike a general-purpose functional language, however, Relay

includes special support for tensors and tensor operators: all numerical values in Relay are

TVM tensors and Relay programs can invoke TVM’s predefined tensor operators by name.

To support training for models with dynamic control flow, Relay implements reverse-mode

automatic differentation (AD) as a source code transformation, similar to the approach of

Lantern (Wang et al., 2018a), but using ML-style references to maintain a tape instead of

shift and reset combinators. Relay’s AD implementation is “higher-order” in two senses:

the algorithm can handle branching, recursion, and higher-order functions and can also

compute higher-order derivatives (by taking in a Relay program that computes a gradient),

which are useful in meta-learning applications.

30

def @lin(%x, %w, %b) {
nn.dense(%w, %x) + %b

}

def @relu_cell (%w, # weights
%b, # offsets
%s, # state
%x # input

) {
let %x2 = @lin(%x, %w.0, %b.0);
let %s2 = @lin(%s, %w.1, %b.1);
(%s, nn.relu(%x2 + %s2))

}

def @trained_relu_cell (%w, %b) {
fn(%x, %h) {

@relu_cell (%w, %b, %x, %h)
}

}

data List <a> {
Nil: () -> List[a]
Cons: (a, List[a]) -> List[a]

}

def @foldl <a, b>(
%f : fn(b, a) -> b,
%z : b, %l : List[a]) -> b {
match(%l) {

case Nil() { %z }
case Cons(%h, %t) {

@foldl (%f, %f(%z, %h), %t)
}}}

def @encode <state_t , in_t , out_t >(
%cell : fn(state_t , in_t) -> (

state_t , out_t),
%input : List[in_t],
%init : state_t) -> state_t {
@foldl(

fn(%state , %in) {
%cell(%state , %in).0

}, %init , %input)
}

@encode(
@trained_relu_cell(

%weights , %offsets),
%input , %init)

Figure 3.2: An example of Relay code, namely an implementation of a recurrent neural
network following Olah (2015b). This example employs many of Relay’s features. @lin is
a linear layer, applying nn.dense (dense matrix multiplication) and elementwise addition.
No tensor shapes are annotated, but Relay’s type inference will infer the shape of the result
using the operators’ type relations (matrix multiplication’s relation encodes broadcasting
semantics (Contributors, 2019) and addition’s relation is identity). @relu_cell defines a
ReLU (rectified linear unit) RNN cell, taking in a tuple of weights and biases (the dots
indicate tuple indexing) and returning a tuple literal. @trained_relu_cell returns a closure
(note the lexical scoping). Note the parametric polymorphism employed in the definition of
the List type and implementation of @foldl, which are common in functional programming
languages (and part of Relay’s standard library). @encode uses @foldl to implement a
generic encoder RNN by folding a cell function over a list of inputs, demonstating how
Relay’s functional programming features can implement a deep learning model in a modular,
reusable manner.

31

Relay’s type system is its main domain-specific adaptation, as it incorporates reason-

ing about tensor shapes in order to make shape information statically available for domain-

specific optimizations. Hence, Relay’s tensor types explicitly include the shapes and datatypes

of tensors (rather than, for example, hiding size information from the type system as in some

general-purpose languages like Java and C++).1 DL applications present some complexity

regarding tensor shapes, as commonly used tensor operators in DL frameworks may produce

outputs of different shapes depending on the shapes of the inputs (for example, elementwise

operations tend to have “broadcasting” semantics, meaning that if one input is larger than

the other, the smaller input is copied out, or “broadcasted,” to the larger size when possi-

ble). To support reasoning about the shapes of the results of tensor operators, Relay assigns

type relations to all tensor operators, which declare the relationship between the input and

output types (and therefore also the tensor shapes), constituting a lightweight form of de-

pendent typing. The type relations are handled during type checking as constraints, which

are first gathered during type inference (unification) and then passed to a constraint solver,

which either finds a solution to all the constraints (success) or fails to solve some constraints

(failure, meaning a shape is wrong or more annotations are needed). In principle, these

constraints could be expressed in some logical domain for a solver; since most constraints in

tensor operators are simple equalities or inequalities, the actual implementation of Relay’s

type checker simply includes imperative procedures (in C++) that examine the shapes of

the arguments and results and either assign underspecified type variables to concrete ones or

fail to unify and declare failure. While somewhat ad hoc, this implementation has sufficed

for the dozens of tensor operators presently in Relay.

Language-level optimizations in Relay allow it to achieve performance comparable or su-

perior to that of widely used frameworks on a variety of models in Roesch et al. (2019),

despite Relay’s additional complexity compared to static dataflow graphs. Rather, Relay’s

1Relay also permits tensors with dynamically checked shapes, which include dimensions labeled Any to
indicate that they should be checked at run time. This feature was not included in the initial presentation
of the language, though it is discussed in Roesch (2020).

32

expressive features allow for many compile-time optimizations, preserving high-level program

information for optimizations to use. Many optimizations use tensor shape information from

the type system to change layouts for operators or perform memory planning. A partic-

ularly profitable optimization is Relay’s automatic operator fusion pass, which recognizes

chains of tensor operator calls and uses TVM’s lower-level loop fusion faculty to replace

these with a single fused operator. Relay is also designed to easily support writing further

optimizations by providing a general interface for optimizations inspired by LLVM, namely

as source-to-source program transformation passes. Since the output of an optimization

is another Relay program, optimizations can easily compose with each other, allowing for

adding optimizations to recognize specific structures in a program and handle those sepa-

rately. For example, Relay’s AD capability is implemented as an “ordinary” pass rather than

as a language primitive—the fact the AD pass accepts any Relay program and returns a Relay

program is a key reason for its generality. The extensible optimization interface thus provides

a relatively simple means for adding program transformations to exploit domain-specific (or

even model-specific) properties, allowing for improved performance without modifying the

high-level descriptions of models, ensuring portability.

2 Design Advantage: Type-Directed Relay Fuzzing

Note: This section has been adapted from an unpublished class assignment Flanders et al.

(2021).

While the generality and expressiveness of Relay’s programming model has directly guided

some later research, such as Nimble (Shen et al., 2021) or the 3LA work discussed in Chap-

ter 5, the presentation of the language has also been helpful for the testing and development

of the compiler itself. In particular, Relay’s systematization of operators’ tensor shape prop-

erties in terms of type relations allowed my collaborators and me to design and implement a

fuzzer for the language (Lyubomirsky et al., 2021) that is able to generate Relay programs

using almost all of the language’s features, including operator calls. The programs generated

33

by the fuzzer are guaranteed to type check in Relay, which means that the fuzzer must ensure

that the tensor shapes passed to operators are valid as programs are generated. While the

task of reasoning about tensor shapes is, in principle, a complex one, the presentation of type

relations in Relay for reasoning about tensor shapes suggested several possible approaches

for automatically generating programs that fulfilled the constraints. The TVM community

is in the process of discussing whether to adopt this fuzzing approach as part of its test-

ing infrastructure (Lyubomirsky, 2022). The following sections give further background on

fuzzing and details on the design of the fuzzer.

2.1 Fuzzing Overview

Debugging a compiler can pose significant difficulties because compilers make a strong guar-

antee to users—that they will accept any valid program and faithfully implement its seman-

tics, including large programs with complex functionality. Identifying internal errors at an

early stage in a compiler’s development and narrowing down their causes can make it easier

for compiler developers to fix them and devise regression tests for the future.

Though the space of potential programs is infinite, the programs themselves are structured

and hence amenable to random generation. This approach is known as language fuzzing and is

a commonly used test generation technique for compilers (Liang et al., 2018). CSmith (Yang

et al., 2011) is a very well-known fuzzer for C and C++ programs, following the rules of the

language specification to ensure that programs it generates will be standards-compliant. So

long as the generated programs are valid, any errors detected during compilation indicate

errors in the compiler rather than bugs in the programs; test oracles that might be applicable

are simply ensuring that the compiler will not crash, that (if the language has strong typing)

the type system’s guarantees are never violated at run time, or that compiling the same

program on different settings should not change the observable behavior.

A significant challenge for compiler fuzzing is “format validation”—initial compiler checks

that the input is well-structured. Programs that fail such basic checks have no chance of

revealing bugs deeper in the compiler. Any approach to language fuzzing must overcome this

34

barrier, either by starting with a valid program or by generating a program using a grammar

and a set of generation rules. For example, some works like Holler et al. (2012) and Lemieux

and Sen (2018) have taken approaches that combine or mutate known-buggy programs to

produce new buggy programs. Other works, like Dewey et al. (2015) and Chandra and Bodik

(2017), encode validity conditions in logical specification languages and employ solvers to

ensure that generated programs fulfill the necessary criteria.

2.2 Reasoning about Tensor Shapes

In the case of DL frameworks, tensor shapes present a significant format validation challenge,

since most operators will only accept shapes in particular formats and errors will typically

only be detected at run time (generally because most DL frameworks have front-ends in

dynamically typed languages like Python). Works such as ShapeFlow (Verma and Su, 2020)

can detect shape errors using a dynamic analysis, but it would be expensive to generate

programs entirely at random and filter them using such analyses afterwards. Generating a

priori valid tensor programs is more challenging, since it requires tracking shape constraints

as the program is built up (without full knowledge of the final program). The type relations

in Relay, however, allow for statically determining if shapes are valid—this gives guidance

for generating programs operating on tensors that are guaranteed to be valid.

However, even though Relay’s type relations allow for statically reasoning about tensor

shapes, they present other challenges for fuzzing. Namely, the type relations are opaque to

the type system: They simply assert that some property holds over the input types, the

output type, and potentially compile-time parameters (in real tensor operators, these pa-

rameters might be an axis dimension or a pooling policy), but provide no programmatic way

of inspecting what that property is. As a result, the Relay type-checker makes no assump-

tions about what information type relations use or what properties they check—indeed, they

are implemented using developer-written C++ functions that directly check properties and

update any underspecified types. The Relay type-checker combines solving type relations

with type inference by running the checkers continually until reaching fixpoint. This method

35

of solving poses a further difficulty to implementing a fuzzer, since this method assumes a

complete program (whereas a fuzzer would be building up a program) and does not provide

any way of determining whether adding a new relation would introduce an inconsistency,

except for running all the gathered relations to fixpoint again. Another difficulty of this last

scenario is that if adding another type relation introduces an inconsistency, the implemen-

tations of type relations do not give any information about what new type relations would

succeed; they only reject those that do not. Generating valid Relay programs thus requires

being able to reason about type relations and, in particular, constructively find expressions

that will satisfy them.

2.3 Fuzzer Implementation

To implement the fuzzer, we rely on Relay’s typing rules and follow the overall approach of

Fetscher et al. (2015) to construct programs by following typing rules “in reverse.” For dealing

with the challenges posed by type relations and operators, we consider multiple approaches

generally inspired by the cosntraint-based fuzzing approach detailed in Dewey et al. (2015).

The initial prototype presented in Lyubomirsky et al. (2021) is publicly available at https://

github.com/slyubomirsky/relay_fuzzer and an updated version being reviewed in TVM’s

RFC process is avilable at https://github.com/slyubomirsky/tvm/tree/fuzzer-poc.

The fuzzer proceeds by starting with a type and generating an expression that satisfies

it, performing this procedure for each subexpression according to the typing rules. The

program is thus built up “in reverse” starting from its return type—the expression genera-

tor is used to produce expressions matching the return type. This may require introducing

more types. For example, if the generated return type of the program is T1 and the ex-

pression generator intends to produce a let expression that fulfills this type, it will produce

let %a : T2 = ?b in ?c, where %a is a fresh variable, T2 is a newly generated type, ?b

is an expression of type T2 (requiring another call to the expression generator), and ?c is

an expression of type T1 in which a may appear (the expression generator must track which

https://github.com/slyubomirsky/relay_fuzzer
https://github.com/slyubomirsky/relay_fuzzer
https://github.com/slyubomirsky/tvm/tree/fuzzer-poc

36

variables are in scope).2 The remainder of this section will discuss the implementation of

the fuzzer in greater detail, as well as its approaches for handling type relations in Relay.

For expressions other than operators (therefore not requiring any type relations), gener-

ating expressions to match a given type by the method of Fetscher et al. (2015) is generally

straightforward. All types other than algebraic data types (which will be discussed below)

have literals, so for any type, there is always at least one possible expression of that type

and therefore termination can be guaranteed by forcing the expression generator to produce

a literal. Thus, for any types T, the expression generator may choose to produce a literal of

that type, a variable that is in scope of type T, or a connective expression like a let binding,

a conditional, etc., that has the final type T. Connective cases are generally recursive and

require further calls to the type generator. Using the previous example of generating a let

binding with a final type of T1, the expression generator proceeds by creating a fresh local

variable %a that will be assigned to a new type T2 (generated by the type generator). The

final expression let %a : T2 = ?b in ?c will be produced by generating an expression ?b

of type T2 and an expression ?c of type T1, where %a is in scope and may be used. Below a

few subtler cases are discussed in detail.

The fuzzer is capable of generating programs using all the language features of Relay,

except for the following restrictions:

• All types are fully annotated.

• All shapes are concrete (do not contain dynamically checked Any dimensions).

• Only algebraic data types and polymorphic functions included in the standard library

are included; the generated programs do not define new ones.

The below sections will briefly discuss how these restrictions could be addressed as well.

2Regarding notation, we will use ? as a sigil to indicate a metavariable, one standing for an expression
rather than a program variable (since Relay uses % and @ sigils, the ? sigil will adequately distinguish).

37

2.3.1 Algebraic Data Types (ADTs)

ADTs present some corner cases for expression generation. An ADT in Relay is defined as a

sequence of constructors that take argument types and produce a member of the ADT. ADTs

may take type parameters (for example, List[a]), which appear in the constructors, and,

crucially, ADT constructors can be recursive, meaning that an argument to a constructor

can be a member of the ADT (for example, a List ADT is built up by applying the Cons

constructor to an existing list and a new member). Though an instance of an ADT (a “literal”)

in some sense can be given as a call to the constructor, it cannot always be guaranteed that a

valid call can be constructed. For example, suppose there is an ADT B where all constructors

of B take an argument of type B—it is impossible to construct an instance of B without

already having one. Additionally, because ADT constructors are recursive, naively choosing

constructors at random is not guaranteed to terminate: in the example of a List ADT, it is

possible to generate an infinite stack of Cons constructors. Thus, ensuring termination will

also require choosing a non-recursive constructor.

In principle, it would not be difficult to check whether a given ADT is possible to in-

stantiate and only permit creating terms of that type if there is a variable in scope with

that type, nor would it be difficult in general to find a non-recursive constructor to use for

forcing termination. For simplicity, we considered only the ADTs in Relay’s standard library

(SML-style lists, option types, and Haskell-style trees), which can all be instantiated and

for which we hard-coded the choices of non-recursive constructors (an empty list, an empty

option, and a tree leaf).

2.3.2 Pattern-Matching

Relay pattern-matching expressions are based on those in SML and OCaml and consist of

a value being matched and a series of clauses (pairs of patterns and expressions). Relay

features a pattern language comprised of wildcards (match any value), pattern variables

(match any value and bind it to a variable, scoped to the clause), a constructor-matcher (gives

38

an ADT constructor and subpatterns and matches an ADT with the same constructor for

which all constructor arguments match the corresponding subpattern), and a tuple-matcher

(checks that all subpatterns match all tuple members). A match in Relay by default must

be complete, meaning that the matching patterns must be able to match any instance of the

value type; match completeness is checked during type checking. This means the expression

generator must be able to generate complete match expressions.

As a simplification, our prototype generates patterns at random from the pattern language

(based on the given type: tuple patterns for tuple types and constructor patterns with

the appropriate constructors for a given ADT) and finally appends a wildcard pattern to

guarantee completeness. In general, it would be possible to generate patterns guaranteed

to be complete using an approach similar to that of the Relay match-completeness checker,

which enumerates possible pattern-match cases by “expanding” holes in the patterns if they

are not specific enough to determine whether a given clause matches or rejects it. The

completeness checker raises an error if some case is not matched by any pattern, but a

generator could instead use such a case to create a new pattern.

2.3.3 Polymorphic Functions

The present generator does not produce new polymorphic functions (and the type generator

does not output such types), but in principle, it would not be very difficult to produce them.

The only difference from producing any other expressions is that there is no way to produce

a literal for a type parameter: there must be a variable in scope that contains a value of

that type (e.g., a tuple or ADT that has it for a member) or a function whose return type

contains a value of that type; these conditions would be feasible to check, though the present

fuzzer does not perform such reasoning.

However, the expression generator does produce calls to the polymorphic functions in-

cluded in Relay’s standard library (e.g., map, which is of type fn<a, b>(f: fn(a) -> b, l:

List[a]) -> List[b]). This is implemented by checking whether it is possible to instantiate

the function type against a given return type (whether there exists an assignment of type

39

variables that will produce that return type), where any unmatched variables are assigned

to a new random type. To avoid type inference ambiguities, all type arguments to calls are

specified explicitly.

2.3.4 Addressing Type Relations

To be compatible with the general scheme of following typing rules “in reverse,” we must solve

type relations in the following sense: Given a return type T and relation R, assuming that

T is a possible return type R, we must find input types I1, . . . , In such that R(I1, . . . , In, T)

holds. The solutions (the I1, . . . , In) need not be unique, though in practice there may be

an interest in having policies to decide which solutions should be prioritized (this was not

explored in the initial prototype).

For determining if an operator call is possible for a given type (i.e., if a type T is the

possible return type of relation R for some input types), we found by inspection that TVM

operators tend to output single tensors (or in the case of batch norm, a tuple of three tensors)

of a specific rank (number of dimensions) and were generally capable of outputting a tensor

of any shape with that rank. Thus, checking whether an operator call could be matched to a

given type simply amounted to checking whether the type was a tensor type and the shape

had the appropriate rank. For generality, the prototype allows for registering an arbitrary

“recognizer” function that takes a type and determines if it is a valid return type for a given

operator.

For the prototype, we considered considered several common Relay type relations that are

associated with certain basic tensor operators and that are manipulated in TVM’s standard

optimization passes, such as elementwise multiplication, bias addition, matrix multiplication,

and 2D convolutions. We also included batch norm as an example of a Relay operator that

returns a tuple rather than a single tensor. Since this was intended only as an exploratory

prototype, we implemented direct support only for 22 operators typed according to 7 relations

(given in Table 3.1), chosen based on the complexity of their type relation implementations

in C++ and on their being affected by the standard passes. This is only a fraction of the

40

Relation Operators Supported
Identity nn.relu, ceil, floor, trunc, sign,

logical_not, log, log10, log2, clip
Broadcast add, subtract, multiply, divide,

logical_add, logical_or, logical_xor
(all elementwise)

Dense nn.dense (dense matrix multiplication)
Bias Add nn.bias_add
Batch Matrix Multiplication nn.batch_matmul
Batch Norm nn.batch_norm
2D Convolution nn.conv_2d

Table 3.1: Operators and type relations supported in the fuzzer prototype.

approximately hundred total operators in TVM, but does account for many of the most

commonly used. The following discussion of the necessary steps for solving Relay type

relations is based on the operators and relations in this group.

Formalization. One approach is to directly follow the approach of Dewey et al. (2015)

and encode type relations in a logical domain. Type relations for operators tend to check

only simple equalities between the result shape and argument shape, assuming a fixed rank

and generally applying very simple rules for assigning the numerical representation (e.g.,

float32 or int8). Because the relations tended to assume fixed ranks for result shapes and

argument shapes, this made it very straightforward to encode the relations as integer linear

programming (ILP) problems, where each shape dimension in the argument was a variable

and the return shape was fixed to a constant. The ranks and numerical representations

could easily be chosen outside the ILP encoding. For example, most unary operators in

Relay use an identity relation, where the input shape exactly equals the output shape; many

elementwise operators have a broadcast relation, where an argument with dimensions of size

1 or a smaller rank than another argument can be copied to be compatible with the larger

argument (this simply required encoding conditional checks).

https://github.com/apache/tvm/blob/431a7d6c0b7e5ae71b411c500836b136322f9fbf/src/relay/op/type_relations.cc#L38
https://github.com/apache/tvm/blob/fc48514f1d8ccffcebd12007cb6c602506975703/src/relay/op/type_relations.cc#L67
https://github.com/apache/tvm/blob/26733095f5a1e0887c32d644429d430bc1f51c91/src/relay/op/nn/nn.h#L40
https://github.com/apache/tvm/blob/26733095f5a1e0887c32d644429d430bc1f51c91/src/relay/op/nn/nn.cc#L52
https://github.com/apache/tvm/blob/26733095f5a1e0887c32d644429d430bc1f51c91/src/relay/op/nn/nn.cc#L901
https://github.com/apache/tvm/blob/26733095f5a1e0887c32d644429d430bc1f51c91/src/relay/op/nn/nn.cc#L633
https://github.com/apache/tvm/blob/a1d43c15ac6382831370c6de141bf80888761e70/src/relay/op/nn/convolution.h#L133

41

For example, here are the ILP encodings for the Identity, Broadcast, and Batch Norm

type relations:

• Identity: For each argument (there can be any number, but all the Identity operators

considered in the fuzzer are unary), add constraints that each dimension of each argu-

ment is equal to the corresponding dimension in the result shape (all shapes must be

the same rank).

• Broadcast: There must be exactly two arguments, of which at least one must be the

same rank as the result shape (let us call it r). The other may be of a smaller rank.

Let a1 be the argument with the greater rank and a2 be the argument with lesser (or

equal) rank (let us call it r2). Let b be a shape vector where, for all indices i from 1

to r, bi = (a1)i if i < r − r2 and if i ≥ r − r2, bi = (a1)i if (a1)i is not equal to 1 and

otherwise bi = (a2)i−(r−r2). We constrain all dimension in b to be equal to the result

shape. All dimensions in a1 of index i ≤ r − r2 must be equal to bi and for i > r − r2,

(a1)i and (a2)i−(r−r2) must either be equal to bi or 1.

• Batch Norm: The return type is a tuple of three tensors, (b1, b2, b3). There are five

arguments a1, a2, a3, a4, a5. There is also a compile-time parameter called “axis,” which

in the current implementation is a fixed constant (eventually, it should be made an

ILP variable), which we will denote as x (in the real implementation, it is a 0-based

index, but for this description, let us consider it a 1-based index). b1 can have any

rank r ≥ x and b2 and b3 must both be vectors (rank 1). a1 must be of rank r and all

other arguments are vectors (rank 1). All dimensions of a1 are constrained to be equal

to the dimensions of b1. All other arguments and b2 and b3 are constrained to have the

shape (b1)x.

Since ILP is an NP-complete problem, it is possible to represent Boolean logic constraints

like logical ors and implications (which are used in the encoding for Broadcast). This does

42

suggest that using a constraint logic programming (CLP) language as in Dewey et al. (2015)

would likely be viable.

Notice that all reasoning about type constraints in this scheme is local (that is, solving

one relation at a time without requiring the global gathering of type constraints). Locally

reasoning about type constraints ensures that queries to constraint solvers will be kept small

and likely tractable, which should allow programs to be constructed quickly while still guar-

anteeing the validity of generating programs.

Brute Force. If a maximum size is stipulated for shape dimensions, that makes the domain

of possible solutions finite and therefore amenable to brute-force searching. Memoization

can reduce the amount of searching, though brute force will still scale badly for large tensors

(real DL models have tensors with dimensions of sizes greater than 1000). Nevertheless,

an advantage of brute force is that it is not necessary to independently formalize the type

relations as with the ILP-based approach—the C++ checkers from TVM can be directly

called with the concrete candidate argument types and the return type.

Sampling Instead of Solving. To avoid the complexity of reformalizing type relations

(as well as having to depend on a solver), another means of finding solutions by reframing

the problem. Rather than starting from a concrete return type and finding argument types

that satisfy the relation, it is instead possible to generate valid argument types and seed

the type generator with the return type produced by the imperative checker. That is, the

next time the expression generator needs a new type, it can (with some probability) pick

a “sampler” to generate a return type and use the relation solution to produce an operator

call.

One way of implementing forward solving is to use the same ILP encodings and leave

the return type unconstrained, simply using the ILP solver’s solution. However, for specific

relations (those examined in the process of writing the prototype), it is often simple to write

a procedure to generate random valid argument types and construct the return type from

43

those.

If we consider the same examples as before, we may note that the sampling procedures

are even simpler than the ILP encodings:

• Identity: Generate a random shape for the return shape. Generate the desired number

of arguments (1 for the operators considered here), which must match the generated

return shape.

• Broadcast: Generate a random return shape (must be of rank at least 1, which we

will denote r), which we will call b. Generate a1, a random shape of rank r and a2,

a random shape of rank 0 ≤ r2 ≤ r. For all i ∈ [1, r − r2), set (a1)i = bi. For all

i ∈ [r − r2, r], choose a random bit: if it is 1, set (a1)i = bi and (a2)i−(r−r2) = 1 and if

it is 0, set (a2)i−(r−r2) = bi and (a1)i = 1.

• Batch Norm: Generate a random rank r ≥ 1. Generate a random axis parameter

x ≤ r (again, assuming it is a 1-based index). Generate a return shape b1 of rank r by

choosing random dimensions. All other argument shapes and return shapes are vectors

of dimension (b1)x.

Manual Solving. The original prototype included only ILP-based and brute-force solving

and sampling, but subsequent experimentation in the process of preparing the RFC suggested

another approach for reasoning about TVM’s type relations would be viable—namely, simply

writing manual procedures to generate argument types given a return type. We dismissed this

approach out of hand for the original prototype as demanding too much manual engineering

effort, but further reflection on the sampling approach revealed that sampling is, in reality,

no less laborious. (Similarly, reformulating type relations to produce ILP encodings would

also be quite laborious.) Notice that the above-described sampling procedure for broadcast

begins by generating a return type and then describing how to construct argument types

from the return type. The same was true of the other sampling procedures. In general, these

44

solving procedures for the type relations are simpler than the implementations of the type

relations themselves since they have a simpler task: the type relations must ensure that the

argument types and result type are compatible (some may be unconstrained; others, already

specified), whereas this solver constrains only the result type and is free to generate any

valid argument types.

Indeed, the simplicity of these manual solvers and the fact that they do not require an ILP

or CLP solver led to my recommending this approach in my RFC to the TVM community

(only brute force solving would entail less implementation work, at a great computational

cost). While the type relation’s implementation cannot be reused directly to implement this

form of solver, the logic is similar, so it would not be a large imposition on contributors

of new type relations to also implement a solver. Another practical advantage of having

manually specified solvers is that it allows for more control over generation policy : solvers

can be parameterized, in case only solutions of a particular form are desired for a specific

fuzzing task (e.g., testing a specific kind of pass). There is only one invariant that must hold:

as long as the “recognizer” for an operator accepts a given return type, the solver must be

able to return input types for it.

2.4 Preliminary Results and Implications

We note that two interesting bugs were found during the development process for initial

prototype. The first bug was uncovered in small-scale test runs of the fuzzer and was due

to a missing base case in match exhaustion. The second bug was found by inspection while

formalizing the type relation for nn.bias_add and was a missing bounds check. These bugs

both related to type checking; fixes for them were accepted.3 Large-scale runs also revealed

a parser round-tripping bug (generating a program AST, using TVM’s pretty-printer to

express it in the text format, then trying to parse the program text, with the expectation of

preserving the original AST) wherein refs of refs would fail to parse (this has not yet been

3https://github.com/apache/tvm/pull/7459 and https://github.com/apache/tvm/pull/7554, respec-
tively.

https://github.com/apache/tvm/pull/7459
https://github.com/apache/tvm/pull/7554

45

fixed).

Our trials at scale also yielded a generation rate of 26.4 KB/s, with no program ever

failing to type check. (By contrast, a pure grammar-based fuzzer was able to reach 1225

KB/s, but only 0.082% of programs generated type checked and none of those included a

single use of a tensor operator.) Interestingly, there was little variation in speed between the

brute force, ILP-based, and sampling-based approaches (the manual solving approach had

not been implemented at the time of our initial trials), though this may be attributable to

the low maximum tensor sizes used in the trials (only a maximum dimension of 10). Solving

operators may not have been a performance bottleneck at all; further profiling will likely be

necessary. Additionally, the prototype was implemented in Python and could likely be sped

up simply by reimplementing it using TVM’s C++ APIs. Further exploration of performance

tradeoffs for fuzzing Relay will be an interesting subject as the community discusses whether

to employ it over the long term.

There are many further issues related to the fuzzer that would likely also be worth

exploring. The fuzzer’s ability to generate expressions of a given type can be similarly

used for generating mutants (replacing a given term with another of the same type) and

thus perform mutation-based fuzzing. We may also consider type-driven minimization by

replacing subexpressions with literals of the same type. Depending on the fuzzer’s success, we

may need to implement fuzzer taming and test case minimization. It may also be possible to

handle tensors with dynamically checked shapes in Relay’s type system by “relaxing” concrete

shapes, namely replacing concrete dimensions with Any (since it would be guaranteed that

at least one concrete solution exists); type inference could also be tested by identifying cases

where type annotations could be removed without introducing ambiguity. Additionally, given

the present fuzzer’s demonstrated ability to generate well-typed programs quickly, it would

be of great interest to investigate whether the fuzzer can uncover bugs subtler than crashes at

compile time, though this would require checking manually specified correctness conditions

for compiler passes or execution results. It could potentially be fruitful to use a DART-

like (Godefroid et al., 2005) white-box approach to harvest information about paths taken in

46

the compiler or executor and to thereby generate programs exercising more features, which

has been pursued in the context of DL models (albeit testing lower-level kernels) by Liu et al.

(2022b).

In the context of this dissertation’s wider goals, it is most important to note that it

was Relay’s typing rules that allowed for the quick and relatively simple development of a

fuzzer capable of exercising almost all of Relay’s features. To the best of my knowledge,

no comparable tool exists for fuzzing the front end of any other deep learning framework,

certainly not one capable of reasoning about tensor shapes accepted by operators. It is my

hope that the techniques used here for fuzzing Relay could be applied to the development

of compilers in other domains with complex constraints and motivate the development of

powerful type systems for safety and optimization purposes—indeed, powerful type systems

that make the system itself easier to test.

3 Summary

Relay’s principled approach to representing and optimizing deep learning models served as

guidance for the work detailed in the chapters to follow, providing infrastructure and design

approach for a view of DL models as programs; indeed, Relay itself was directly in the

implementation of 3LA (Chapter 5). The enthusiastic adoption of Relay and TVM by some

groups in industry, such as in Amazon’s AI projects (Kim and Sharma, 2019) and by the

many companies that have presented their use of TVM at TVMCon, stresses the practicality

of providing a general programming model for deep learning programs and the application

of traditional compilers techniques to this domain.

47

Chapter 4

RUNTIME TECHNIQUES: DYNAMIC TENSOR
REMATERIALIZATION

Note: This chapter is adapted from the previously published work Kirisame et al. (2021).

This section focuses on the problem of reducing the amount of memory needed to train a

DL model by exploring whether a runtime system can reduce the memory required to train

dynamic models with limited performance overhead by taking advantage of domain-specific

properties.

1 Problem Description

Though computation costs are the most common consideration when optimizing model per-

formance, memory can also be a limiting factor. As state-of-the-art deep learning (DL)

models continue to grow (Brown et al., 2020; Devlin et al., 2018; Brock et al., 2018), train-

ing them within the constraints of on-device memory becomes increasingly challenging. DL

models require large amounts of memory to store input tensors, parameters, and intermedi-

ate values. Storing intermediate activations for backpropagation in particular is the largest

source of memory usage in training, as Sohoni et al. (2019) report, noting that interme-

diate activations occupy 2.2GB in a batch of a Transformer model. Memory limitations

prevent the training of larger and deeper models, which require storing more intermediate

activations. Batch sizes are also limited by the available memory, potentially slowing down

training runs overall, since it may be possible for the hardware to efficiently process a batch in

parallel and thereby train a model using fewer batches (though batch size also affects conver-

gence). Experimental higher-order learning techniques like Model-Agnostic Meta-Learning

48

(MAML) (Finn et al., 2017), which learns optimal hyperparameters for a model but requires

storing multiple sets of intermediate activations, are particularly limited by the available

memory. The great memory costs of training DL models also pose problems at the hardware

level, as DL models can run on a variety of devices—including specialized accelerators, em-

bedded devices, or simply older models of GPUs—and on-device memory cannot be easily

expanded. While it may be possible to swap memory between devices to make the best use

of the space available, communication is potentially expensive. Ultimately, the memory bot-

tleneck limits what DL models can be run on various devices and limits researchers’ ability

to explore memory-intensive architectures and training techniques.

As noted in Chapter 2, the approach of checkpointing has been successful in reducing

the memory costs of training. Checkpointing approaches trade computation time for space

by freeing intermediate activations and recomputing them when they are later needed in

backpropagation. Such an approach is particularly advantageous in DL because most tensor

operators are pure, meaning that operators used to compute the intermediate values can be

re-run without changing the behavior of the model. However, recent approaches to check-

pointing in DL, including Jain et al. (2019), Kumar et al. (2019), and Shah et al. (2021),

proceed by producing a fixed schedule of operations to perform, including which intermedi-

ate activations to free and later recompute. These approaches thus cannot directly support

general dynamic models (e.g., Gruslys et al. (2016) only supports a specific form of RNN) or

unusual training setups like in MAML. Additionally, optimal static planning in Jain et al.

(2019) and Shah et al. (2021) is achieved by reducing checkpointing to ILP problems, often

resulting in expensive queries to solvers (e.g., DenseNet-161 could not be solved within 24

hours in Jain et al. (2019)), which can limit the pace of development or prototyping.

The work detailed in this chapter, Dynamic Tensor Rematerializatino (DTR), demon-

strates that static planning is unnecessary for DL checkpointing. DTR operates like a tensor-

level cache: it collects metadata on tensors and operators as a model is trained and uses it to

guide heuristics that choose which activations to free and later recompute. As a runtime sys-

tem, DTR can utilize dynamically gathered information (e.g., measured operator costs) and

49

adapt to any given memory bound so long as there is enough at least enough memory to store

the tensors needed for any single operator in the model. Additionally, its simple, cache-like

approach requires no advance knowledge of the model or application, letting it immediately

support arbitrarily dynamic models and applications featuring higher-order differentiation.

For example, given a model with data-dependent control flow like TreeLSTM (Tai et al.,

2015), DTR’s runtime can simply evict tensors when memory runs out and rematerialize

them as needed. By contrast, static planning techniques assume a static dataflow graph,

which requires “unrolling” dynamic models and performing (potentially expensive) planning

for every distinct input.

The following sections describe the design of DTR in further detail, highlighting the

following contributions:

• We prove that DTR can train an N -layer linear feedforward network on an Ω(
√
N)

memory budget with only O(N) tensor operations (Section 3), which is within a con-

stant factor of optimal and matches the offline bound of the Chen et al. (2016) static

checkpointing technique.

• We formalize DL model checkpointing as an online rematerialization problem and define

a greedy algorithm parameterized by caching-inspired heuristics. In simulated trials,

our heuristic attains near-optimal performance on a variety of DL models (Section 4).

• We implement a DTR prototype by making only modest modifications to the Py-

Torch framework, enabling training under restricted memory budgets for both static

and dynamic models and demonstrating the ease with which our algorithm can be

incorporated into an existing DL framework (Section 5).

2 Design Overview

DTR follows the example of Jain et al. (2019) in comparing checkpointing to the older

compilation technique of register rematerialization (Briggs et al., 1992) (hence freeing a tensor

50

Execution Trace
Computing t7 with memory budget 4:

t7 = PerformOp(op7, t5, t6)

[t5, t6 become unevictable]

Rematerialize(t5)

t5 = PerformOp(op5, t3)

[t3 becomes unevictable]

AllocateBuffer(t5.size)

PerformEviction() #eg, t2
[t3 becomes evictable]

AllocateBuffer(t7.size)

PerformEviction() #eg, t3

t0

t2

t1

t3

t4 t7

t5

t6

= IN MEMORY

t0

t2

t1

t3

t4 t7

t5

t6

Before

After

PerformOp(op, args):
Note: Performs op(args), rematerializing any
evicted arguments. Wraps every operator
invocation.

Exclude members of args from eviction
for any evicted arg in args:

Rematerialize(arg)
buf := AllocateBuffer(size(op(args)))
res := call op(args), store into buf
Permit eviction for members of args again
Update metadata for args and res
return res

Rematerialize(t):
op, args := operator and arguments that
produced t (from metadata)

return PerformOp(op, args)

PerformEviction():
Free the tensor chosen by the heuristic

AllocateBuffer(b):
Note: Wraps every memory allocation.
while available memory < b:

PerformEviction()
return new buffer of size b

Deallocate(t):
Note: Wraps every tensor deallocation.
Heuristic decides policy for t (e.g., free
permanently or simply evict)

Figure 4.1: (Top) Pseudocode for DTR’s basic logic (independent of heuristic), and (Bottom)
DTR’s sequence of events in an operator call. Note that PerformOp() may make further
recursive calls in order to rematerialize arguments.

51

will be called “evicting” it and recomputing will be “rematerializing” it), but approaches the

problem dynamically, like a domain-specific cache or memory manager. DTR incorporates

similar reasoning to past checkpointing approaches, but avoids any inherent assumptions

about the model or even the fact that gradients are computed. Hence, DTR operates as a

thin runtime layer that intercepts tensor allocations, accesses, and deallocations.

Figure 4.1 shows DTR’s high-level approach. In AllocateBuffer, DTR first checks if

sufficient memory is available when a tensor allocation occurs. If so, it generates a fresh

tensor identifier, initializes its metadata for future recomputation, allocates the requested

memory, and returns a new tensor. If not, DTR heuristically selects and evicts resident

tensors until the requested allocation can be accommodated. Constant tensors (loaded from

external data) cannot be evicted since no corresponding operation rematerializes them. Upon

tensor access, DTR first checks if the tensor is resident in memory. If so, it updates tensor

metadata before returning the requested tensor. If the tensor has been evicted, DTR rema-

terializes it by replaying the parent operation that originally produced the tensor. Crucially,

rematerialization can be recursive: if the arguments to an evicted tensor’s parent operation

have also been evicted, then they must first be rematerialized. Rematerialization may trigger

more evictions if memory is exhausted during the potentially recursive process. Upon tensor

deallocation (other than by evictions), the runtime is invoked again (Deallocate), letting it

update tensor metadata and eagerly perform profitable evictions.

Assumptions. This description of DTR assumes that: tensors are accessed only by mono-

lithic, opaque operators; tensors are either constants or produced by operators; operators

produce individual tensors; and operators are pure (deterministic functions of their argu-

ments). Under this model, a training epoch is simply a sequence of tensor operations with-

out any inherent requirement to recognize training-specific structure, like the transition to

the backward pass. DTR will evict as many tensors as necessary to avoid running out of

memory. If all inputs and outputs of a single operation cannot fit into available memory,

rematerialization will fail; therefore, on a given model and input, there may be a threshold

52

for the lowest budget DTR can support. The choice of heuristic can affect the likelihood

of failure since different eviction choices can result in deeply nested rematerializations that

require many tensors to remain in memory.

Heuristics. DTR is parameterized by heuristics that guide its eviction choices. As in

caching, DTR’s eviction heuristic dynamically predicts which resident tensors are least valu-

able. The choice of heuristic determines what metadata (additional runtime facts) must

be tracked for each tensor and operator and thus affects DTR’s runtime overhead. In our

evaluation, we consider a runtime system that tracks the following metadata for each tensor

t:

• staleness, s(t), the time since last access;

• memory, m(t), the size of the tensor; and

• cost, c0(t), the time required to compute t from its parent tensor(s).

We observe that the overhead of updating these metadata (recording access times, sizes, and

computation times) is low relative to the cost of typical DL tensor operations.

We propose a rematerialization-specific heuristic that balances staleness, memory, and

cost, evicting the tensor t that is stalest (least likely to be needed soon), largest (saves the

most space), and cheapest (requires the least additional rematerialization if t is needed again).

To capture the total amount of rematerialization required if t is evicted, we sum the costs

over the tensor’s evicted neighborhood e∗(t), i.e., the set of evicted tensors that would either

need to be rematerialized to recompute t or would need t to be resident to be recomputed. We

define the projected cost, c(t), of rematerializing tensor t as c0(t) +
∑

t′∈e∗(t) c0(t
′). Using this

definition, we define our heuristic, which evicts the tensor minimizing hDTR(t) = c(t)/[m(t) ·

s(t)]. By including both forward and backward dependencies of t in e∗(t), hDTR penalizes

creating long chains of evicted tensors (and hence potential recursive rematerializations) that

could arise from t’s eviction.

53

To illustrate evicted neighborhoods, suppose DTR is checkpointing the network shown

in Figure 4.1, where the resident tensors are {t0, t2, t3, t6}. Before node t7 is computed,

we have e∗(t2) = {t1, t4} and e∗(t3) = {t1, t4, t5}. Since each new eviction can expand a

given tensor’s evicted neighborhood and each rematerialization can shrink it, dynamically

tracking evicted neighborhoods can introduce further costs at run time. To decrease runtime

overhead, we developed an approximation of e∗ using an undirected relaxation tracked by

a union-find data structure that uses a constant-time approximation for splitting. We use

this approximation to define heq
DTR analogously, which performs nearly as well as hDTR in our

evaluation but requires up to 2 orders of magnitude fewer metadata accesses per batch (see

Section 4, especially Sections 4.2 and 4.5.3).

Our heuristic formalization in terms of s,m, and c0 is sufficiently general to express several

existing heuristics for caching and checkpointing. For example, the common LRU heuristic is

“minimize 1/s(t),” the GreedyRemat heuristic from Kumar et al. (2019) is “minimize 1/m(t),”

and the MSPS heuristic from Peng et al. (2020) is “minimize cR(t)/m(t)” (where cR(t) sums

c0 over t’s evicted ancestors). We compare hDTR to these other heuristics inspired by recent

work in our simulated evaluation (Sec. 4).

Deallocation. Deallocation policies present further tradeoffs since tensors marked as deal-

located by the original program are still potential dependencies for rematerializations. In

principle, DTR could simply disregard deallocations by the original program, but this would

ignore potentially useful information about the deallocated tensors (viz., that the original

program will not use them again). Banishing (permanently freeing) deallocated tensors can

save memory immediately and is the only way to free constants (which cannot be evicted);

however, it can prevent possible future evictions since the children of a banished tensor

cannot be rematerialized. By contrast, evicting deallocated tensors does not prevent poten-

tial evictions, though it increases the runtime’s management overhead and keeps constants

in memory. In the heuristics we examined, we implemented an eager eviction mechanism,

which evicts a tensor as soon as all external references to it are freed. This lets DTR adhere

54

to the garbage collection pattern of the underlying framework, preempting desirable evic-

tions, which further reduces future runtime overhead. (See Section 4.5.2 for a comparison of

deallocation policies.)

3 Formal Bounds

Following Chen et al. (2016), we prove a bound on DTR’s checkpointing overhead (for a

particular eviction heuristic) on a linear feedforward network of N nodes. Even without

the ability to inspect the model, DTR requires only O(N) tensor operations under a
√
N

memory budget, the same bound (up to constant factors) as the Chen et al. (2016) static

checkpointing technique and the optimal Θ(N) required by a memory-unconstrained algo-

rithm. We also establish that DTR’s dynamic approach cannot always match the overhead

of static checkpointing: given N tensor operations and a memory budget of B, under any

deterministic heuristic, an adversary could always construct a network where DTR would

perform a factor of Ω(N/B) more tensor operations than a (potentially expensive, see Jain

et al. (2019)) optimal static checkpointing algorithm.

3.1 Linear Feedforward Overhead

We assume that tensor computations dominate the run time and, as in prior work (Griewank

and Walther, 2000; Chen et al., 2016; Binder et al., 1997; Beaumont et al., 2019), that each

tensor is of unit space and time cost. For the proof below, we use the heuristic he∗ , which

evicts a resident tensor t with minimal |e∗(t)|.

Theorem 3.1. Given an N node linear feedfoward network and a memory budget B =

Ω(
√
N), DTR with heuristic he∗ can execute one forward and one backward pass in O(N)

operations.

55

3.1.1 Proof Sketch.

During the forward pass, DTR performs exactly N tensor operations: since each node of

the linear feedforward network depends only on the previous node, no rematerialization is

necessary. Our heuristic he∗ , which evicts tensors with the smallest evicted neighborhoods,

ensures that the B tensors resident at the conclusion of the forward pass are evenly spaced

throughout the network. In turn, these evenly spaced checkpoints ensure that DTR never

has to successively rematerialize too many tensors. As the backward pass proceeds and

checkpoint tensors are freed, the overhead to compute all gradients between the checkpoints

k and k + 1 shrinks as log(k)/k2, which sums to a constant. Below, we provide a full proof.

3.1.2 Network Definition

We assume the network consists of operators f1, . . . , fN , where the tensor computed by the

ith operator is given by fi(ti−1), with tj denoting the tensor computed by the jth operator.

Note that we consider t0 to be the input tensor, which for simplicity will always reside in

memory and not contribute to the active memory consumption. For this reason, we may

consider f1 to be a nullary operator. Additionally, we assume that the size of each tensor

(denoted m(t)) is 1, and likewise for the compute time c0(fi) for each operator fi. Note that

we may write c0(ft) to mean the same as c0(fi) for t = ti, when the index i is not convenient.

For backpropagation, we assume each operator fi has an associated gradient operator f̂i,

which computes the result t̂i = f̂i(ti−1, t̂i+1). We may consider t̂N+1 = 1 to be an unevictable

unit tensor, as is the case in automatic differentiation, but for simplicity we define t̂1 = f̂1(t̂2)

and t̂N = f̂N(tN−1). As above, we assume unit memory and compute for each f̂i.

t1 t2 t3 tN−2 tN−1 tN

t̂1 t̂2 t̂3 t̂N−2 t̂N−1 t̂N

. . .

. . .

56

3.1.3 Liveness and Banishing

To optimize memory usage during computation, we introduce the notion of liveness and

banishing. At a high level, liveness allows us to determine when a given tensor is no longer

required for subsequent network computations, which in turn allows us to permanently free

(banish) tensors to regain memory when certain conditions are met.

To be more precise, we formalize the network as a program:

let t1 := f1();

let t2 := f2(t1);

...

let tN := fN (tN−1);

// Backpropagate.

let t̂N := f̂N (tN−1);

let t̂N−1 := f̂N−1(tN−2, t̂N);

...

let t̂2 := f̂2(t1, t̂3);

let t̂1 := f̂1(t̂2);

We say a tensor t is live when there is a pending operation in the program that takes t as

an input. When t is no longer live, and every tensor directly computed using t is in memory

or banished, then we say t is banished and we reclaim the memory used by t. Banishing a

tensor additionally makes its children unevictable.

Thus for example, tN can be immediately banished after computing, tN−1 can be banished

after t̂N , both tN−2 and t̂N after t̂N−1, and so on. This will become important in the proof.

The analysis of liveness can be done statically for static models, and by reference counting

for models with dynamism. In both cases, liveness information is fed to DTR online through

deallocation events.

3.1.4 Heuristic Definition

Heuristic he∗ is a reduced form of the DTR heuristic, as it does not account for tensor

staleness. Here, we provide a detailed motivation of its definition.

57

Recall the evicted neighborhood e∗(t) of tensor t, as described in Section 2.

Definition 3.1 (Projected Cost). For a given tensor t, the projected cost of t is the value

c(t) =
∑

t′∈e∗(t)

c0(ft′)

Now, we define the reduced heuristic in full generality; the definition of he∗ will be a

consequence of the simplified setting we analyze.

Definition 3.2 (Compute-Memory Heuristic (general)). The compute-memory heuristic

score for a resident tensor t is defined as

he∗(t) =
c(t) + c0(ft)

m(t)

Corollary 3.1. Under our simplified compute and memory constraints, he∗(t) = |e∗(t)|+ 1.

Since the heuristic is only used to rank tensors, the common additive constant 1 is unimpor-

tant. The heuristic |e∗(t)| will have the same behavior as |e∗(t)|+ 1.

Note, importantly, that uncomputed tensors are not considered in any of the above defi-

nitions (as we do not know about their existence yet, from a dynamic execution perspective).

3.1.5 Proof of Theorem 3.1

Now we prove Theorem 3.1, which bounds the overhead of DTR on a linear feedforward

network with N nodes and
√
N memory by a constant factor of the runtime required by an

algorithm with unlimited memory.

Proof. To prove this claim, we will consider the forward pass and the backward pass sep-

arately. In the forward pass, we show that our algorithm only performs N computations,

matching that of an algorithm with unlimited memory. Furthermore, upon completion of the

forward pass, we tightly characterize the B tensors that remain in memory. We show that

a set of evenly spaced checkpoint tensors remain in memory throughout the backward pass,

58

Figure 4.2: Visualization of the state of memory for DTR with N = 200, B = 2d
√
Ne, and

heuristic he∗ . A value of 0 (black) indicates the tensor is evicted or banished, 1 (red) indicates
the tensor is a forward value in memory, and 1.5 (white) denotes an in-memory gradient
tensor corresponding to the forward tensor. The backward pass begins at the red vertical
line; note the presence of evenly spaced checkpoint tensors (red horizontal lines) that persist
in memory throughout the backward pass. Note also the recursive checkpointing behavior
visible in the early gaps of the backward pass, and finally the completely red triangles of the
later gaps, when there is enough free memory to avoid repeated rematerialization altogether.

until banishment. The presence of these checkpoint tensors allows us to argue that the algo-

rithm never has to rematerialize too many tensors in a row. Furthermore, as the algorithm

computes additional gradients, it banishes checkpoint tensors that are no longer needed,

freeing more space for additional checkpoints. The overhead incurred by the algorithm can

therefore be kept to a constant factor of the required Θ(N) time. This checkpointing behavior

can be seen in the trace of the algorithm, visualized in Figure 4.2.

We now analyze each of the phases in detail.

59

Phase 1: Forward pass. Recall that in a feed-forward network, every computation de-

pends only on the preceding one. Thus in our simplified network, we only ever need B = 2

units of memory to compute the forward pass without any rematerializations (furthermore,

this is the minimum required memory). For this reason, the forward pass requires N com-

putations.

After completing the forward pass, we can tightly characterize the tensors remaining in

memory. In particular, Lemma 3.1 tells us that the maximum gap between resident tensors

is bounded by

L ≤ 2(N − 2)

B − 1

We note that this bound is tight in an asymptotic sense: if we can keep B tensors in

memory, and the forward pass is of length N , then the maximum gap must be at least N/B.

Next, we will analyze the backward pass. Key to this analysis is the claim that “not

too many” of the tensors in memory at the beginning of the forward pass are evicted before

banishment during the backward pass. The existence of these “checkpoint tensors” allows us

to argue that we do not do too much rematerialization work.

Phase 2: Backward pass. During the backward pass, our algorithm computes gradients

t̂i. Each gradient computation relies on two inputs: t̂i+1 and ti−1. We show that neither

input incurs too much rematerialization cost - t̂i+1 because it is pinned in memory, and ti−1

because the paths of evicted tensors are not “too long.” The first condition follows from the

fact that ti is banished after computing t̂i+1, therefore forcing t̂i+1 to remain in memory until

it is banished. The second condition is formalized in the following lemma, proved later in

this section.

Lemma 3.1 (Checkpointing). Consider an execution of the DTR algorithm with B units of

memory and heuristic he∗, applied to the graph described in section 3.1.2. Let S be the set

of tensors in memory after computation of tN in the forward pass. Then, C ⊆ S is a set of

60

“checkpoint” tensors from the forward pass with the following properties:

1. During the backward pass, each c ∈ C stays in memory until it is banished.

2. The gap between neighboring tensors in C satisfies

L ≤ 4(N − 2)

B − 1

These |C| checkpoint tensors divide the n forward tensors into |C| groups, indexed by k,

each of length Lk ≤ 4(N−2)
B−1 . The total computational cost of the backward pass is equal to

the sum of the computational cost for each group,

C =

|C|∑
k=1

Ck.

The second key insight in the analysis of the backward pass is that, for every group that

is processed, the algorithm banishes a checkpoint tensor c ∈ C and receives a unit of extra

memory. In particular, at the start of processing group |C|−k, the algorithm has 2+k pieces

of extra memory (two from banishing the most recently used gradient and forward tensor,

and k from the banished checkpoint tensors). We can leverage this extra memory to process

the gradients in later groups with less rematerialization overhead, using the k extra units of

memory to create intermediate checkpoint tensors. The following lemma describes how the

cost of computing all the gradients in a group decreases as we free more memory.

Lemma 3.2. Suppose we have 2 + k pieces of free memory to compute all of the gradients

associated with an evicted forward tensor path of length Lk. Then the number of rematerial-

izations needed to compute all the gradients is of order

Ck = O
(
Lk +

L2
k

k2
log k

)

61

Applying this lemma, the total cost of the backward pass becomes

C =

|C|∑
k=1

Ck

.
|C|∑
k=1

(
Lk +

L2
k

k2
log k

)

≤
|C|∑
k=1

Lk +

|C|∑
k=1

log k

k2
L2
k

≤ |C|
(

4(N − 2)

B − 1
+ 1

)
+

|C|∑
k=1

log k

k2

(
4(N − 2)

B − 1
+ 1

)2

. |C|
(
N

B

)
+
N2

B2

|C|∑
k=1

log k

k2

where . hides constant factors. Note that |C| ≤ B, since C ∈ S where S is the set of tensors

in memory at the end of the forward pass. Also note that log k
k2

is a convergent sequence, so

its partial sums are bounded. Therefore, we can simplify the bound to

C . N +
N2

B2

Since B = Ω(
√
N), we conclude that the total cost of the backward pass is O(N). Adding

this to the O(N) cost of the forward pass, we see the total compute is O(N), as desired.

3.1.6 Proofs of Intermediate Results

Here, we present intermediate results that we used in the proof of our main result.

Lemma 3.3. Consider the DTR algorithm operating with heuristic he∗. Suppose we seek

to (re)materialize forward tensor tk for k ≤ N , where the resident tensor preceding tk is

denoted by tj (with j < k). Suppose also that tj is not evicted during the computation of

tk. Then, if the algorithm begins with tj in memory and with M units of memory, and runs

62

until computing tk, then the maximum length L of any evicted sequence of tensors between

tj and tk is bounded by

L ≤ 2((k − j)− 1)/(M − 1)

Proof. Proof by induction. We will show that, when the algorithm computes tensor j + i,

for i = 1, 2, . . . , k− j, the maximum length of an evicted sequence of tensors between tj and

tj+i satisfies

Li ≤ 2(i− 1)/(M − 1)

Base case. When i = 1, both tj and tj+1 = tk are resident tensors, so the gap is L1 = 0.

Inductive step. Consider the contents of memory after computing tj+i. We begin by

partitioning tensors tj, . . . , tj+i intoM segments S1, . . . , SM , each ending in a resident tensor

(note, the last segment must end on a resident tensor, since tj+i was just computed). If

i < M so that there are not M resident tensors, then the length of each segment is zero and

we are done. Otherwise, each segment corresponds to an evicted sequence of zero or more

tensors (i.e., the tensors preceding the resident tensor). Let si denote the resident tensor

that ends segment i.

Now, consider all adjacent pairs of segments (Sl, Sl+1) for 1 ≤ l ≤ M − 1. The average

63

length of the pairs is given by

L =
M−1∑
l=1

|Sl|+ |Sl+1|
M − 1

=

(
2

M∑
l=1

|Sl|
M − 1

)
− |S1|+ |SM |

M − 1

=
2

M − 1

(
M∑
l=1

|Sl|

)
− |S1|+ |SM |

M − 1

=
2i

M − 1
− |S1|+ |SM |

M − 1

≤ 2(i− 1)

M − 1
.

Let (Sl′ , Sl′+1) be the pair of adjacent segments with minimum combined length. Since the

average length is bounded by the inequality above, it follows that the length of (Sl′ , Sl′+1) is

also less than or equal to 2(i− 1)/(M − 1).

Since the heuristic evicts the tensor that results in the smallest gap, we conclude that

the eviction will create a gap no larger than 2(i− 1)/(M − 1). By the inductive hypothesis,

the largest previous gap was no larger than 2(i−2)/(M −1), so we conclude that the largest

gap after this computation is no more than 2(i− 1)/(M − 1).

Proof of Lemma 3.1.

Proof. We will prove this lemma by dividing the backward pass into two phases. In the first

phase, the first two gradient computations of the backward pass, we may be forced to evict

some element of S. In the absence of further information on the evicted tensor, we upper

bound the resulting gap by twice the maximum gap between tensors in S. This gives us the

upper bound in Item 2 of the lemma.

In the second phase, the remaining N − 2 gradient computations of the backward pass,

we show that heuristic he∗ never leads us to evict a tensor that would lead to a gap of more

64

than 4(N−2)
B−1 among the tensors in memory. This allows us to conclude that the checkpoint

tensors C remain in memory until eviction, as claimed.

We now elaborate on the two phases, as discussed above.

Phase 1: The first two gradient computations of the backward pass.

We present a detailed treatment of the first two gradient computations in the backward

pass, t̂N and t̂N−1. We will show that, during the course of these two computations, at most

one tensor from S is evicted from memory. Since Lemma 3.3 tells us that the maximum gap

in S satisfies LS ≤ 2(N−2)
B−1 , we conclude that removing a single tensor results in a gap in C

of no more than 2LS. Additionally, we will show that after the computation of the first two

gradients, there are at least two non-checkpoint tensors in memory. Since only two free units

of memory are required to rematerialize a path of tensors, this sets us up for the analysis of

the remaining gradient computations.

We begin by noting that, after the forward pass completes, tN and tN−1 are both in

memory (since tN has just been computed, which requires tN−1). Since tN is no longer

needed in subsequent computations, it is immediately banished. Assuming B ≤ N , this

leaves us with exactly one unit of free memory (if B > N , no elements of S are banished

in the first two computations, and the 2Ls bound is trivial). This single unit of memory is

then filled by the computation of t̂N , which only depends on tN−1.

Now, tN−1 is no longer needed, so it is banished, and we have exactly one unit of free

memory. To compute t̂N−1, we require tN−2 and t̂N to be in memory. Since t̂N was just

computed, it is clearly in memory. However, tN−2 may or may not be in memory. We

consider the two cases separately.

If tN−2 is in memory, then we immediately compute t̂N−1. Next, tensors tN−2 and t̂N are

banished, leaving us with the desired two free units of memory.

If, on the other hand, tN−2 is not in memory, we must rematerialize it. Let tj be the

resident tensor that terminates the evicted path of tensors containing tN−2. We need to

perform the sequence of computations {tj+1, tj+2, . . . , tN−2}. However, we only have one

65

unit of free memory, so after computing tj+1 we will need to evict some tensor from memory.

The evicted tensor must be ti for some i ≤ j, as neither tj+1 nor t̂N can be evicted (the

former will be used for the next computation, and the latter is pinned in memory).

Regardless of which tensor ti is evicted, the length of the evicted path it creates cannot

exceed 2LS, where LS is the length of the longest path in S. Lemma 3.3 bounds LS ≤ 2(N−2)
B−1 ,

so this step of the algorithm maintains Item 2 of the lemma.

It remains to show that the maximum gap in C does not become larger than 2LS during

the remaining steps of rematerialization, and that the computation of t̂N−1 ends with at least

two units of free memory. To show the first claim, we note that the number of evicted tensors

on the path to t̂N−1 does not exceed 2LS (this is the maximum length possible, if tj was

evicted and its adjacent evicted paths were both of length LS). Therefore, when performing

the intermediate rematerializations necessary to rematerialize tN−2, it is always possible to

evict a tensor between tj and tN−2, with a heuristic value of less than 2LS. Since we evict

the tensor with the smallest heuristic value, we will never create an evicted path of length

greater than 2LS.

Finally, we note that, after computing t̂N−1, both tN−2 and t̂N will be banished. This

leaves us with the desired two units of free memory.

We have shown that, after computing t̂N−1, the algorithm has two units of free memory,

and the checkpoint set C has a maximum gap of no more than 2LS. Next, we show that this

set C is maintained throughout the remainder of the backward pass.

Phase 2: The remaining N − 2 gradient computations.

The analysis for the remainder of the backward pass follows via induction, using the

argument for rematerializing tN−2 above.

We have already shown a base case; we can maintain the desired properties of C when

computing t̂N−2. For the inductive step, consider the computation of t̂i for 1 < i < N − 1.

Suppose we have at least two units of free memory, and t̂i+1 in memory. Furthermore,

suppose that the set C satisfies the properties of the lemma. We need to rematerialize ti−1,

66

which terminates a path of evicted tensors of length no more than 2LS. As we rematerialize

this path, it may require evicting tensors from memory. However, by the same logic we

applied above, we know that the algorithm may always choose to evict a tensor resulting in

a path of less than 2LS. The algorithm will always choose this option in favor of creating a

longer evicted path. We conclude that the upper bound of 2LS is preserved when computing

t̂i. Furthermore, after t̂i is computed, we may evict t̂i+1 and ti−1, giving us two units of free

memory. This proves the inductive step.

Note that, in the case that i = 1, the computation requires no rematerializations, as t̂1

only depends on t̂2, and the latter is in memory at the time of computing t̂1.

Proof of Lemma 3.2.

Proof. Let Ci,k denote the cost of processing gradient i in this group. Since there are Lk

associated gradients, the total cost is

Ck =

Lk∑
i=1

Ci,k.

To compute each Ci,k we note that computation of the gradients proceeds in phases. When

the first gradient is computed (at cost C0,k = Lk), two units of memory must be devoted

to the current tensor computation, while the remaining k units of memory are used for

intermediate rematerialized tensors. Applying the intermediate checkpointing lemma, 3.4,

we conclude that some of these intermediate tensors will remain as checkpoints (indexed by

j, with j = 1 indicating the highest-indexed tensor), with adjacent checkpoints separated by

a distance at most Lk,j = 4(Lk−2)
k−1 . We can express the total cost of computing the gradients

in this gap as

Ck = Lk +
∑
j

∑
i∈group j

Ci,k

We begin by considering the first group to be processed, j = 1, associated with the last

67

path between checkpoints. Since it is the first group to be processed, it has no spare memory

for intermediate checkpoints. Therefore, computing the first gradient requires rematerializing

the entire group (with at most Lk,j intermediate tensors), computing the second gradient

requires rematerializing at most Lk,j − 1 tensors, and so on. This gives a total cost bounded

as follows (using . to denote inequality up to constant factors).

∑
i∈group 1

Ci,k ≤
Lk,j∑
l=0

Lk,j − l

. (Lk,j)
2

=

(
4(Lk − 2)

k − 1
+ 1

)2

.
L2
k

k2

Next, we compute the total cost of calculating all the gradients between checkpoints j

and j + 1. When the algorithm begins to compute group j, it has j pieces of extra memory,

allowing it to further subdivide group j into j+1 intervals. By the intermediate checkpointing

lemma, each of these intervals is of length at most 4(Lk,j−2)
j−1 + 1. We have

∑
i∈group j

Ci,k ≤ j

4(Lk,j−2)

j−1
+1∑

l=0

4(Lk,j − 2)

j − 1
+ 1− l

. j

(
4(Lk,j − 2)

j − 1
+ 1

)2

.
L2
k,j

j
.

68

Summing over the at most k checkpoints j, we conclude

Ck . Lk +
∑
j=1

L2
k,j

j

= Lk + L2
k,jHk

. Lk +
L2
k

k2
log k

where Hk is the kth harmonic number.

Lemma 3.4 (Intermediate Checkpointing). Consider the behavior of the DTR algorithm us-

ing the heuristic he∗, when computing gradients for the backward pass. Suppose, immediately

prior to the computation of gradient t̂i, we have 2 + k pieces of free memory (k ≥ 0), and

that t̂i+1 is in memory. Suppose also that forward tensor tj is the first resident ancestor of

t̂i, so that we will rematerialize ti−1 starting from tj to compute t̂i. Finally, suppose that tj

is never evicted until it is banished.

Then, immediately after computing t̂i, memory contains a set of “checkpoint” tensors C

with the following properties:

1. The tensors in C remain in memory until they are banished.

2. The gap between neighboring tensors in C satisfies

L ≤ 2((i− j)− 1)

k + 1

Proof. We begin by analyzing the state of memory after computing t̂i. Since we started with

2+k pieces of free memory, and rematerialized ti−1 starting from tj, Lemma 3.3 tells us that,

after rematerializing ti−1, the gaps in memory between tj and ti−1 are all bounded by

L ≤ 2((i− j)− 1)

k + 1
.

69

We need to evict one additional item from memory, in order to compute t̂i. After this sin-

gle eviction, the maximum gap is no more than doubled. We conclude that, after computing

the first gradient, the maximum gap is no more than 2L.

It remains to show that the maximum gap in C does not become larger than 2L during

the remaining steps of rematerialization. To show this, we first note that the computation

of the next gradient, t̂i−1, begins with two units of free memory (having just banished t̂i+1

and ti). We also note that the number of evicted tensors that need to be rematerialized for

this gradient computation does not exceed 2L. Therefore, when performing the intermediate

rematerializations necessary to rematerialize ti−2, it is always possible to evict a tensor with

a heuristic value less than 2L. Since we evict the tensor with the smallest heuristic value,

we will never create an evicted path of length greater than 2L.

This argument can be applied for every gradient computed between t̂i and t̂j+1, which

shows that the desired properties of C are maintained.

3.2 Adversarial Overhead

Using a simple heuristic, DTR can match the performance of static checkpointing on linear

feedfoward networks despite lacking advance knowledge of the architecture. However, we

prove below that DTR cannot always match the performance of optimal static checkpointing

on an arbitrary network because it cannot access or reorder the network. By contrast, an

optimal static algorithm can reorder the same example to compute each feedforward network

sequentially, requiring only N computations.

Theorem 3.2. For any deterministic heuristic h, there exists an N-node network on which

DTR with budget B ≤ N requires Ω (N/B) times more tensor computations than optimal

static checkpointing.

Proof. We will prove this theorem by designing an adversarially generated graph that forces

DTR to repeatedly rematerialize evicted tensors. Our architecture simultaneously leverages

the static planner’s ability to reorder computations, to avoid repeated computation of evicted

70

Figure 4.3: An example construction of an adversarial graph. Gray tensors are in memory
(t0 must always be in memory). The initial tensor t0 has B paths descending from it, so
there is always some path from t0 with no resident tensors. The adversarial construction
chooses to place the next node at the end of such an entirely evicted path.

tensors.

Since DTR is a dynamic algorithm, it must choose which tensor to evict at time T based

only on the portion of the graph computed up to time T . Our adversarial architecture

generator builds the network one node at a time, choosing the next node based on the

previous choice of the DTR algorithm. The construction is as follows:

1. The graph begins with tensor t0, which, by the behavior of DTR, must remain in

memory. Tensor t0 has B children, t1 through tB.

2. After step B of the computation, one of t0’s children must no longer be in memory.

Call this evicted child t∗ The next node revealed by the adversary is the child of t∗,

causing DTR to rematerialize t∗.

3. The adversary continues to repeat this construction. Since t0 has B children, but there

are only B− 1 units of memory to allocate among its descendants, there must be some

path from t0 that contains no resident tensors. The adversary reveals the next resident

tensor on the end of that path, causing DTR to rematerialize the entire path. This

repeats until we have revealed all N nodes of the graph.

An example construction of the adversarial architecture is given in Figure 4.3.

71

Next, we analyze the computation of DTR on this graph. To do this, we sum the cost of

computing each tensor t1 through tN . Consider the architecture of the final revealed network,

and let Lj denote the length of the path starting from tj, where j = {1, . . . , B} so that tj is

a direct child of t0. Since our adversary places the next node such that the entire path must

be rematerialized, the total cost of computing this graph dynamically is

C =
B∑
j=1

Lj∑
i=1

i

=
B∑
j=1

1

2
Lj(Lj + 1)

≈
B∑
j=1

L2
j

where ≈ hides constant factors. This sum is minimized when the Lj are all equal, which

gives Lj = (N − 1)/B. The cost of computing all the tensors is therefore at least

C &
B∑
j=1

N2/B2

= N2/B

To finish the proof, we upper bound the cost of the optimal static algorithm on this

adversarial graph by exhibiting one static checkpointing algorithm and analyzing its behavior.

The static algorithm may observe the entire structure of the N nodes, and rearrange the

computation in any equivalent order.

Consider the static algorithm that computes the entire graph one path at a time. That

is, the algorithm first computes t1 and all its children (requiring only two units of memory,

with no rematerializations), then computes t2 and all its children (again, reusing the same

two units of memory), until all B paths are computed. The total cost is therefore Θ(N).

We see that DTR requires Ω(N2/B) computations to compute the tensors in this graph,

72

whereas a static checkpointing algorithm would only require Θ(N) computations. We con-

clude that when DTR is run with a deterministic heuristic, there exists an architecture on

which it requires at least Ω(N/B) times the runtime of a statically checkpointed evalua-

tion.

4 Heuristic Evaluation

We simulated DTR on a variety of models to empirically evaluate its checkpointing perfor-

mance across different heuristics and compare it to the static checkpointing schemes examined

in Jain et al. (2019). DTR enables training under restricted memory budgets and closely

matches the performance of an optimal baseline.

4.1 Experimental Setup

To model a realistic execution setting for DTR, we instrumented PyTorch (Paszke et al.,

2019b) to log operations performed, metadata on tensors and operators (including sizes,

compute times, and parent tensors), and deallocations during the execution of various models.

We replayed the logs in a simulator that models the behavior of DTR in the style shown in

Figure 4.1. The simulator tracks the tensors in memory at any given time, chooses tensors

to evict per the heuristic when the memory budget is exceeded, and sums the total cost of

the model operators and rematerializations. For verisimilitude, the simulator also models

the semantics of various low-level PyTorch implementation details, including tensor aliasing,

in-place mutation, and multi-output operations.

We gathered logs from several static models examined in recent work, such as Jain et al.

(2019) and Peng et al. (2020), in addition to three dynamic models (LSTM, TreeLSTM, and

Unrolled GAN); each log corresponds to an execution of the forward pass, computing the

loss, and performing the backward pass. The simulator also enforces the additional condition

that gradients for all trainable weights be resident at the end of the simulation in order to

model the requirements for performing a full training step. See Section 4.3 for a full technical

specification of the simulator and log format.

73

4.2 Heuristics Examined

We examine variants of the evicted neighborhood–based hDTR heuristic described in Sec. 2

(on which we establish formal bounds) as well as heuristics inspired by past work in caching

and checkpointing. All following heuristics are defined as a score function in terms of the

metadata m(t), s(t), and c0(t), where the tensor with the minimum score is evicted.

In addition to hDTR, we consider heq
DTR, which uses an equivalence class–based approxi-

mation ẽ∗ for e∗, and hlocal
DTR, which only uses individual tensors’ costs instead of costs over

evicted neighborhoods. We also include comparisons against other variants of hDTR in Sec-

tion 4.5, but here we focus primarily on these in particular because 1. hlocal
DTR lets us assess

the importance of tracking evicted neighborhoods at run time and 2. heq
DTR lets us evaluate

how well ẽ∗ approximates e∗ in practice. We define the hDTR variants as:

hDTR
def
=
c0(t) +

∑
t′∈e∗(t) c0(t

′)

m(t) · s(t)
, heq

DTR
def
=
c0(t) +

∑
t′∈ẽ∗(t) c0(t

′)

m(t) · s(t)
, hlocal

DTR
def
=

c0(t)

m(t) · s(t)
.

Rather than using directed dependencies, ẽ∗(t) treats the dependency graph of tensors

as undirected (thus admitting some spurious dependencies), letting us decompose the graph

into a set of disjoint evicted components. We can track these evicted components efficiently

using a union-find data structure with a running sum for each component. When a tensor t

is evicted, its component is unioned with those of any evicted neighbors and c0(t) is added

to the component’s running sum. Though this enables near-constant-time merging between

components (by unioning and adding the sums), union-find does not support splitting. To

efficiently split components, we make another approximation: when a tensor t is rematerial-

ized, we simply subtract c0(t) from its component’s running sum and map t to a new (empty)

union-find component. Since this approach removes no connections, it produces “phantom

dependencies” between some tensors. In practice, we find that despite these additional de-

pendences, heq
DTR closely matches the performance of hDTR (Section 4.4) but requires fewer

operations per eviction and rematerialization.

74

We also consider the following heuristics inspired by past work:

hLRU(t)
def
=

1

s(t)
, hsize(t)

def
=

1

m(t)
, hMSPS(t)

def
=
c0(t) +

∑
t′∈eR(t) c0(t

′)

m(t)
,

where eR(t) is the set of evicted tensors that would have to be rematerialized in order

to rematerialize t. hLRU is based on the common “least-recently used” policy for caching,

hsize is based on GreedyRemat from Kumar et al. (2019) (used in TensorFlow XLA), and

hMSPS is based on the MSPS heuristic from Peng et al. (2020). We also include a random

baseline, hrand(t)
def
= X ∼ U(0, 1), to assess how well a heuristic using no metadata whatsoever

performs.

4.3 Simulator Specification

In this section, we provide a detailed technical specification of the DTR simulator. This

includes fundamental abstractions, formal definitions of heuristics, pseudocode, runtime op-

timizations, and details about the log-replaying mechanism.

4.3.1 Fundamental Abstractions

We designed the simulator to support computations logged from PyTorch (see Section 4.3.6).

In PyTorch, a tensor is a view (containing metadata) of a buffer; multiple tensors can point

to a single buffer. This allows us to model the various aliasing relations between tensors in

PyTorch (Paszke et al., 2017); other DL frameworks likely also use a similar representation.

Storage. At its core, DTR is a runtime system for reducing memory usage. As such,

storages (i.e., buffers of memory) are the underlying unit which DTR operates on. They

support the following operations:

• size : Storage→ N: the size of the storage in bytes;

75

• root : Storage → Tensor: the tensor whose parent operation computes the contents

of the storage (there is exactly 1 for each storage);

• tensors : Storage→ List[Tensor]: all tensors which view the storage;

• resident : Storage→ bool: true iff the storage is in memory;

• locks : Storage → N: the number of locks on the storage held interally by DTR

(indicating the storage is needed for pending rematerializations);

• refs : Storage → N: the number of external references to the storage, i.e., those held

by user code.

We say a storage S is evictable if and only if resident(S) ∧ locks(S) = 0.

Tensor. Each tensor t has an associated “parent” operation op(t) which computes it (po-

tentially along with storage(t), its underlying storage).

Each tensor t also has an external reference count refs(t); in particular, each storage S has

refs(S) =
∑

t∈tensors(S) refs(t). The external reference count is used to track whether a tensor

is still live in the source program or whether it should be treated as having been deallocated

by the source program. Additionally, t is an alias iff t 6= root(storage(t)), meaning that t is

a view of a storage created by a different parent operator. For convenience, we define size(t)

to be 0 if t is an alias and size(storage(t)) otherwise (since the metadata will likely be on

CPU).

Unlike storages, a tensor t is resident when storage(t) is resident and op(t) has been

performed after storage(t) last became resident. This condition is denoted as defined(t),

and models the behavior of our PyTorch prototype implementation where the whole tensor

object is destroyed upon storage eviction (including metadata about the view, like striding

76

and offset).1 Thus, before an operation depending on t can be executed, defined(t) must be

satisfied, given our assumption that views of a storage must be evicted once the underlying

storage has been evicted. Note that for a non-alias tensor t, we have resident(storage(t)) if

and only if defined(t).

Operator. An operator represents a fundamental unit of computation in DTR. Operators

are assumed to be pure functions of their arguments, not depending on any other external

state (see Sec. 4.3.6 for our handling of mutation). As such, each operator f has an associated

compute cost cost(f) ∈ N. We assume each f has type List[Tensor] → List[Tensor] and

define inputs(f) and outputs(f) to be the input and output tensors of f , respectively.

4.3.2 Formal Metadata Definitions

While our abstract description of DTR in Figure 4.1 is over tensors, the simulator operates

over storages rather than tensors. Thus we must define the metadata our heuristics use over

storages, providing notions of cost, staleness, and data dependencies for storages rather than

for tensors.

Cost. For a given storage S, we define the compute cost of S as

cost(S) :=
∑

t∈tensors(S)

cost(op(t)).

This is a worst-case estimation: it represents the compute cost which is incurred when

every tensor view of S needs to be rematerialized. An alternative definition is simply

cost(op(root(S))), which may be acceptable as aliasing operations are typically much cheaper

than non-aliasing.

1The storage field in a PyTorch tensor is immutable. In principle, we could have changed this to permit
reassigning views of evicted storages to null and ensure the storages be rematerialized when needed,
but this would have required much more extensive modifications to the codebase, which may rely on the
invariant of immutable storage pointers.

77

Staleness. We estimate the staleness of S by tracking the last access time of each t ∈

tensors(S). The last access time last_access(t) is defined as the most recent time when t

was referenced by a queued operation. Naturally, we define

last_access(S) := max
t∈tensors(S)

last_access(t).

Staleness, given the current time T , is then defined as

staleT (S) := T − last_access(S).

Data dependencies. The dependencies of S are the set of storages

deps(S) := {storage(u) | ∃t. t ∈ tensors(S) ∧ u ∈ inputs(op(t))} \ {S}.

Note that we exclude S since it is not a true dependency (each alias tensor in tensors(S)

technically “depends” on S). Another possible approximation of the above is to simply

take the dependencies of root(S); although this ignores potential dependencies of aliasing

operations, it is precise if all aliasing operations depend only on S.

We now define the dependents of S as the set deps>(S) consisting of all T with S ∈

deps(T). With this definition, DTR can operate over the dependency graph (V,E) where V

is the set of storages and (S, T) ∈ E iff S ∈ deps(T). Note that (V,E) is implicitly indexed

by time T , with V being the set of non-banished but at-least-once computed storages at T

and E being the dependency relations at T .

Evicted neighborhood. The evicted neighborhood e∗, as defined in Section 2, works with-

out modification over the storage dependency graph. We define it here for completeness. Let

depse(S) be the evicted subset of deps(S), and likewise for deps>e (S). Now, let De and D>e

78

be the transitive closures of the relations

{(T, S) | T ∈ depse(S)} and {(S, T) | T ∈ deps>e (S)},

respectively. Then, e∗(S) := {T | (T, S) ∈ De} ∪ {T | (S, T) ∈ D>e }. Intuitively, e∗(S) is the

set of evicted storages that must be resident to compute all t ∈ tensors(S), together with

the set of evicted storages T that need S to be resident before all t ∈ tensors(T) can be

computed.

Relaxed (Union-Find) evicted neighborhood. Actually tracking e∗(S) can be compu-

tationally expensive due to the directed and changing nature of the graph. For each S, e∗(S)

depends on its specific ancestors and descendants, which can vary as tensors are evicted and

rematerialized. An exact solution would likely involve a dynamic graph connectivity data

structure, which would greatly increase the complexity of the simulator’s implementation.

We find an approximate solution by relaxing the definition of the evicted neighborhood.

At a high level, our solution works as follows: given a storage dependency graph G = (V,E),

we first forget edge directions to obtain the undirected dependency graph G̃. Now, let G̃e

be the subgraph obtained by removing all resident storages (and any edges including them).

Each connected component of G̃e is then an evicted component, with each evicted T ∈ V

belonging to exactly one component ε∗(T).

Importantly, we track these evicted components using a Union-Find (UF) data structure,

which efficiently supports merging and obtaining static set metadata. Each component tracks

the sum of the compute costs of its elements (with the union of two components having the

sum of each constituent cost). We denote the associated UF set for a storage T by T.set,

which is mutable state.

79

We can now define the relaxed evicted neighborhood for a resident storage S as

ẽ∗(S) :=

 ⋃
T∈depse(S)

T.set

 ∪
 ⋃

T∈deps>e (S)

T.set

 .

Note that in practice, no UF unions are performed when querying this approximation. In-

stead, we collect and merge the set metadata separately, as otherwise we would erroneously

merge evicted components during heuristic evaluation. This approximation reduces the

worse-case time complexity of querying compute costs over the neighborhood to be linear in

the number of adjacent storages, as opposed to all ancestor and descendant storages.

However, rematerializing a tensor in an evicted component creates a split in the com-

ponent and splitting is not a supported operation on UF data structures.2 Approaches to

splitting would also need to recover the original compute costs of each set, which may re-

quire traversing the whole set if done naively. To handle splitting more efficiently, we use

the following approximation: when a (previously) evicted storage S is rematerialized, we

first set S.set.cost := S.set.cost − cost(S), and then assign S.set := ∅ (i.e., assign S to a

new empty UF set). Note that when a storage is first computed, its evicted component is

also initialized to be empty. While resident storages thus never count towards the compute

cost of a component, “phantom connections” between evicted storages may accumulate over

time (likely depending on the connectedness of the underlying dependency graph). Despite

this limitation, this approximation worked well in practice, as seen in the simulated and

prototype results.

4.3.3 Formal Heuristic Definitions

Having defined the metadata above, we can now formally define the hDTR variants examined.

(Recall that hDTR heuristics compute a score using measures of size, computational cost, and

staleness and evict the tensor with the smallest score, corresponding to the intuition that

2This can be seen as a variant of the Union-Find-Split problem, which typically requires the use of more
complex data structures such as link-cut trees.

80

the tensor evicted should be large, unlikely to be rematerialized, and cheap to rematerialize

if it does need to be rematerialized.)

hDTR(S) :=
cost(S) +

∑
T∈e∗(S) cost(T)

size(S) · staleT (S)
.

heq
DTR(S) :=

cost(S) +
∑

T∈ẽ∗(S) cost(T)

size(S) · staleT (S)
≈ cost(S) + cost∗(S)

size(S) · staleT (S)

Note that the simulator implementation uses the splitting approximation described above,

with ẽ∗(S) depending on the specific sequence of evictions and rematerializations. cost∗(S)

in the second expression is used to denote this statefulness.

hlocal
DTR(S) :=

cost(S)

size(S) · staleT (S)
.

4.3.4 Implementation Details

Runtime state. In what follows, we denote the collective runtime state of the DTR simu-

lator as R, and use the dot notation to indicate stateful reads and writes of runtime values.

The simulator tracks the following runtime state:

• R.heuristic : (Storage,Metadata) → R, the eviction heuristic, interpreted as a

score (the lowest-scored storage is evicted);

• R.budget : N, the memory budget in bytes;

• R.memory : N, the current memory usage in bytes;

• R.T : N, the current clock time in some unit of granularity, such as nanoseconds;

• R.pool : List[Storage], list of all currently evictable storages.

81

Eviction and banishing. To evict a given storage S, we set all tensors in S to be un-

defined, remove S from the pool, and decrease R.memory by size(S). Cached metadata are

also updated as necessary.

Banishing (permanent eviction) is slightly subtler; in particular, it can be done for S

only when deps>e (S) = ∅. Banishing then proceeds by evicting S as above, but with the

additional effect of removing S entirely from the dependency graph. Each T ∈ deps>(S)

is then locked (and effectively becomes an non-rematerializable constant). Storages locked

in this way are said to be pinned (and have a special flag in the simulator), to distinguish

them from those locked during rematerialization, and we permit them to be banished in the

future. Note that banishing can be performed on evicted S when the above condition is met,

in which case the eviction is skipped.

(Re)materialization. When a tensor t is to be (re)materialized, its parents’ storages are

first locked by incrementing the lock count (so that they don’t get evicted while they are still

needed) and undefined parents are recursively rematerialized. We then increment R.memory

by
∑

u∈outputs(op(t)) size(u) (performing evictions as necessary), and move R.T forward by

cost(op(t)). Multi-output operations must be handled carefully so as to not leak memory:

we make sure to decrease R.memory by size(u′) for each u′ ∈ outputs(op(t)) that was defined

prior to the rematerialization. This models the immediate freeing of doubly computed

ephemeral tensors in the PyTorch implementation. Lastly, locks on parent storages are freed

and unlocked storages (including any newly rematerialized ones) are added back into R.pool.

Constants. The simulator models non-rematerializable constants like weights and inputs

by creating dummy “constant” tensors using nullary operators with 0 cost and pinning the

resulting storage. This allows the simulator to have a full picture of the computation graph.

Furthermore, log-accurate banishing requires knowledge of constants (as PyTorch reference-

counts constants).

82

4.3.5 Additional Runtime Optimizations

Banishing and eager eviction. When the final external reference to a storage S is lost,

we know that the underlying DL framework would have reclaimed the memory used by S. To

utilize this information as opposed to doing nothing, DTR can either banish S or simply evict

S normally. When banishing, the runtime must first check that S has no evicted dependents;

if it does, then we retry banishing each time a dependent is rematerialized. Banishing has

the ability to free constants, but at the downside of pinning potentially exploding amounts of

memory. The alternative (eager eviction) is easier to implement and simply involves evicting

S normally (if possible). This prevents the problem of over-pinning memory, but with the

downside that constants can never be evicted. In practice, eager evictions have allowed us

to support lower budgets by pinning fewer values (see Section 4.5.2 for details).

Caching metadata. To avoid costly recomputations of metadata during heuristic evalu-

ations, we cache the local cost cost(S) for each S, as it only changes when new aliases are

made. Additionally, for the hDTR heuristic, we avoid recomputing e∗(S) at each evaluation

by caching and only recomputing it after evictions or rematerializations that directly affect

e∗(S). Such recomputations are further optimized by tracking the evicted ancestors and

descendants separately (allowing them to be recomputed independently, depending on the

position of the affected storage).

4.3.6 Log-Replaying Mechanism

Log format. We logged PyTorch operations as a sequence of abstract instructions corre-

sponding to the semantics of the actions we were easily able to instrument in the framework.

Every PyTorch tensor is given a unique identifier string upon creation, which is recorded and

used in the log. In this section, each PyTorch tensor t corresponds to a simulator tensor JtK.

The log contains the following instructions:

• MEMORY(t, size): logs that t uses size memory; treated as 0 if JtK is an alias.

83

• ALIAS(to, ti): logs that JtoK is an alias of JtiK, i.e., two different views of the same

storage. ti can either be a tensor identifier or ⊥; if ti = ⊥, then to does not alias

another tensor (to’s parent operation created its storage).

• CALL(inputs , outputs , cost , op): logs the operator call outputs = op(inputs) with com-

pute cost cost . This instruction is followed by |outputs| MEMORY and ALIAS instruc-

tions to log information about each output. Each CALL corresponds to a simula-

tor operator JopK with inputs {JiK | i ∈ inputs} and new simulator tensor outputs

{JoK | o ∈ outputs}.

• MUTATE(inputs , inputs ′, cost , op): logs the in-place (mutating) operator call op(inputs)

with compute cost cost , which modifies inputs ′ ⊆ inputs .

• CONSTANT(t): logs that JtK is a constant, and is followed by a MEMORY instruction.

• COPY(to, ti): logs a new identifier to with JtoK = JtiK. This increments refs(JtiK). This

happens when Python code like “x = y” is called where y is a PyTorch tensor and x is

a fresh variable; this action neither creates a new storage nor a new view but only has

x point to the same view as y.

• COPYFROM(to, ti): logs the PyTorch code to = ti where each side is an existing tensor.

This decrements refs(JtoK), increments refs(JtiK), and updates JtoK 7→ JtiK. Intuitively,

this corresponds to Python code like “x = y” where y is a PyTorch tensor and x was

already assigned to a PyTorch tensor; in PyTorch, x is mutated to match y.

• RELEASE(t): logs the destructor of the PyTorch tensor t. This decrements refs(JtK).

Supporting mutation. To support mutation from in-place operators, the simulator adds

a “reference layer” that mutates cloned tensors, allowing for a uniform interface for all opera-

tors. Given a mutation instruction MUTATE(inputs , inputs ′, cost , op), let inew be a new unique

84

identifier for each i ∈ inputs ′, and let inputs ′new = {inew | i ∈ inputs ′}. We then proceed by

treating op as a pure operator from inputs to inputs ′new , where each newly created simulated

tensor JinewK is non-aliasing and has size size(storage(JiK)). Lastly, we decrement refs(JiK)

and update the mapping JiK 7→ JinewK. Intuitively, we are modeling the transformation

op(t) Tensor t′ = copy(t); op(t′); t = t′.

Note that in our prototype implementation, a mutation of i may produce incorrect results

when JiK is an alias, since the mutation layer would create a clone but aliases would still

point to the old storage. Potential solutions in real implementations would be to propagate

the above rewrite to all aliases of a storage (costly) or to mutate storage pointers (which

would have increased the complexity of our modfications to PyTorch).

Output condition. All live tensors at the end of a log (i.e., all t with refs(t) > 0) are

treated as necessary outputs (namely, gradients, the loss value, and the prediction). They

are thus rematerialized (if evicted) and locked to ensure they persist. This prevents the

simulator from incorrectly reporting better results by evicting computed weight gradients

and never rematerializing them. This permits the user to perform the weight update step

outside of DTR immediately after the backward pass ends. Based on our observations of

PyTorch’s optimizer gradient updates, we could also support performing these updates

within DTR, since a parameter update simply performs in-place mutating additions (add_)

of scaled gradients to the parameters.

4.4 Comparing DTR Across Heuristics

For all models in Figure 4.4, DTR executed a training step using a small fraction of the nor-

mal memory required with limited compute overhead. Furthermore, unlike existing static ap-

proaches, DTR automatically supports models with arbitrary dynamism, though it thrashed

at lower budgets for LSTM and TreeLSTM. In all cases, results show that heuristics in-

85

1.00

1.25

1.50

1.75

2.00 InceptionV4 (64)
299x299

Transformer (10)
512x512

U-Net (6)
416x608

TreeLSTM
Binary tree of depth 6, node size 640x1

0.1 0.3 0.5 0.7 0.9
1.00

1.25

1.50

1.75

2.00 ResNet-32 (56)
224x224

0.1 0.3 0.5 0.7 0.9

DenseNet-121 (84)
224x224

0.1 0.3 0.5 0.7 0.9

LSTM (512)
Input dimension 512,

Hidden dimension 1700,
Sequence length 128

0.1 0.3 0.5 0.7 0.9

Unrolled GAN
10 steps, 512x512

0.0 0.2 0.4 0.6 0.8 1.0

Memory Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pu
te

 O
ve

rh
ea

d
(×

)

hDTR heq
DTR h local

DTR hMSPS hLRU hsize hrand

Figure 4.4: Simulated results comparing different heuristics on various models, showing the
rate of computational slowdown for different budgets (fractions of the original peak memory
usage). The black area in each graph corresponds to the memory required to store inputs
and weights, while the gray area denotes the single operator requiring the most memory to
be live at once. The dashed and dotted lines represent the last ratio before thrashing (≥ 2×
slowdown) and out-of-memory errors, respectively. All logs were produced by running each
model 50 times on a single input on a machine with an NVIDIA Titan V GPU (CUDA 10.1,
CuDNN 7.6.4) and a 16-core AMD Ryzen Threadripper 1950X on Ubuntu 18.04, logging the
final “warmed-up” run.

86

corporating more information about chain rematerializations (hDTR, heq
DTR, and hMSPS) can

operate on lower budgets and perform fewer rematerializations than heuristics using less in-

formation. However, these complex heuristics also introduce more runtime overhead, which

must be considered when implementing DTR. In particular, our simulations showed that

hDTR incurred up to 2 orders of magnitude more metadata accesses per batch compared to

heq
DTR, and up to 3 orders of magnitude more compared to hlocal

DTR (see Section 4.5.3). The fact

that heq
DTR closely matches the performance of hDTR while incurring much less runtime over-

head suggests that it would be more effective in practice. Note that even simple heuristics

like hLRU, which require only modest runtime overhead, typically enabled training with 30%

less memory, indicating that some memory savings from checkpointing can be very readily

obtained.

4.5 Ablation Study of DTR Heuristics

In addition to comparing the overhead in terms of additional tensor computations, we also

consider the runtime overhead of different hDTR configurations in terms of the number of

tensor accesses by heuristic computations and metadata updates. We also compare different

eviction policies for the hDTR heuristics: ignoring deallocations, eager eviction, and banishing.

4.5.1 Data Sources

First, we will analyze the three sources of information (metadata) for the hDTR heuristic. Let

us consider a parameterized version of hDTR defined as h′DTR(s,m, c)(t) = c(t)/[m(t) · s(t)],

where s is a measure of staleness, m is a measure of size, and c is a measure of compute cost.

For this study, we take s and m to be the staleness and size functions defined in Section 4.3.

For compute cost c, we compare the following alternatives: the full e∗, the approximation ẽ∗,

and the local cost (cost of the parent operator only). We allow each measure to be entirely

ablated (e.g., s(t) = 1, which we denote s = no).

In the following figures, we specifically have s,m ∈ {yes, no} and c ∈ {e∗, EqClass, local, no}.

Each figure fixes a choice of c, varying s and m.

87

1.00

1.25

1.50

1.75

2.00 InceptionV4 (64)
299x299

Transformer (10)
512x512

U-Net (6)
416x608

TreeLSTM
Binary tree of depth 6, node size 640x1

0.1 0.3 0.5 0.7 0.9
1.00

1.25

1.50

1.75

2.00 ResNet-32 (56)
224x224

0.1 0.3 0.5 0.7 0.9

DenseNet-121 (84)
224x224

0.1 0.3 0.5 0.7 0.9

LSTM (512)
Input dimension 512,

Hidden dimension 1700,
Sequence length 128

0.1 0.3 0.5 0.7 0.9

Unrolled GAN
10 steps, 512x512

0.0 0.2 0.4 0.6 0.8 1.0

Memory Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pu
te

 O
ve

rh
ea

d
(×

)

e * , size, staleness e * , size, no staleness e * , no size, staleness e * , no size, no staleness

Figure 4.5: Results for fixed c = e∗, varying s and m.

1.00

1.25

1.50

1.75

2.00 InceptionV4 (64)
299x299

Transformer (10)
512x512

U-Net (6)
416x608

TreeLSTM
Binary tree of depth 6, node size 640x1

0.1 0.3 0.5 0.7 0.9
1.00

1.25

1.50

1.75

2.00 ResNet-32 (56)
224x224

0.1 0.3 0.5 0.7 0.9

DenseNet-121 (84)
224x224

0.1 0.3 0.5 0.7 0.9

LSTM (512)
Input dimension 512,

Hidden dimension 1700,
Sequence length 128

0.1 0.3 0.5 0.7 0.9

Unrolled GAN
10 steps, 512x512

0.0 0.2 0.4 0.6 0.8 1.0

Memory Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pu
te

 O
ve

rh
ea

d
(×

)

EqClass, size, staleness EqClass, size, no staleness EqClass, no size, staleness EqClass, no size, no staleness

Figure 4.6: Results for fixed c = EqClass, varying s and m.

1.00

1.25

1.50

1.75

2.00 InceptionV4 (64)
299x299

Transformer (10)
512x512

U-Net (6)
416x608

TreeLSTM
Binary tree of depth 6, node size 640x1

0.1 0.3 0.5 0.7 0.9
1.00

1.25

1.50

1.75

2.00 ResNet-32 (56)
224x224

0.1 0.3 0.5 0.7 0.9

DenseNet-121 (84)
224x224

0.1 0.3 0.5 0.7 0.9

LSTM (512)
Input dimension 512,

Hidden dimension 1700,
Sequence length 128

0.1 0.3 0.5 0.7 0.9

Unrolled GAN
10 steps, 512x512

0.0 0.2 0.4 0.6 0.8 1.0

Memory Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pu
te

 O
ve

rh
ea

d
(×

)

local, size, staleness local, size, no staleness local, no size, staleness local, no size, no staleness

Figure 4.7: Results for fixed c = local, varying s and m.

88

1.00

1.25

1.50

1.75

2.00 InceptionV4 (64)
299x299

Transformer (10)
512x512

U-Net (6)
416x608

TreeLSTM
Binary tree of depth 6, node size 640x1

0.1 0.3 0.5 0.7 0.9
1.00

1.25

1.50

1.75

2.00 ResNet-32 (56)
224x224

0.1 0.3 0.5 0.7 0.9

DenseNet-121 (84)
224x224

0.1 0.3 0.5 0.7 0.9

LSTM (512)
Input dimension 512,

Hidden dimension 1700,
Sequence length 128

0.1 0.3 0.5 0.7 0.9

Unrolled GAN
10 steps, 512x512

0.0 0.2 0.4 0.6 0.8 1.0

Memory Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pu
te

 O
ve

rh
ea

d
(×

)

no cost, size, staleness no cost, size, no staleness no cost, no size, staleness no cost, no size, no staleness (random)

Figure 4.8: Results for fixed c = no, varying s and m.

The general trend shown in Figures 4.5, 4.6, 4.7, and 4.8 is that higher metadata com-

plexity (corresponding to more precise notions of the evicted neighborhood) enables more

savings, while staleness and size are required for acceptable computational overhead. It is

interesting to note that the importance of staleness and size depends on the specific model

architecture. For example, cost and size alone each do far better than using both cost and

staleness for the static models (DenseNet, ResNet, UNet), whereas the opposite is true for

the dynamic models. This may be due to model depth or the distribution of tensor sizes or to

the increasing impact of individual checkpoints at lower budgets; further research may shed

more light on the influence of model-specific characteristics like these. Additionally, we may

note that the ẽ∗ approximate cost performs comparably to the e∗ exact cost while requiring

less information, validating our claim that the equivalence classes are a useful approximation.

In general, the best-performing of these heuristics were those with non-ablated choices of

s, m, and c, hence our focus on the h′DTR variants with e∗, ẽ∗, and local cost (hDTR, heq
DTR,

and hlocal
DTR, respectively).

89

1.00

1.25

1.50

1.75

2.00 InceptionV4 (64)
299x299

Transformer (10)
512x512

U-Net (6)
416x608

TreeLSTM
Binary tree of depth 6, node size 640x1

0.1 0.3 0.5 0.7 0.9
1.00

1.25

1.50

1.75

2.00 ResNet-32 (56)
224x224

0.1 0.3 0.5 0.7 0.9

DenseNet-121 (84)
224x224

0.1 0.3 0.5 0.7 0.9

LSTM (512)
Input dimension 512,

Hidden dimension 1700,
Sequence length 128

0.1 0.3 0.5 0.7 0.9

Unrolled GAN
10 steps, 512x512

0.0 0.2 0.4 0.6 0.8 1.0

Memory Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pu
te

 O
ve

rh
ea

d
(×

)

Banishing Eager eviction No Deallocations

Figure 4.9: Results for the hDTR heuristic, comparing banishing and eager evictions.

4.5.2 Banishing and Deallocations

For the following trial, we compared the hDTR heuristic with banishing (permanent removal)

against that with eager evictions, as described in Section 4.3.5. We also compare both

deallocation-aware approaches against simply ignoring deallocations. We only used e∗ cost

because it performed much better than local cost and because it would have been more

complicated to update the definition of ẽ∗ to account for banished neighbors. The results

are shown in Figure 4.9.

As the curves show, banishing is not able to achieve the same budgets across most models

tested as eager eviction. For UNet, the difference is large: banishing can only support 90%

of the baseline budget (and OOMs at 0.8 ratio), while eager eviction can support 50% of

the baseline budget. However, banishing still attains low budgets on most models, even

obtaining better computational overhead under the same budget and savings for ResNet.

Since banishing potentially allows for greatly lowered runtime overhead, implementations of

DTR can consider conditionally enabling it in situations where the tradeoff is more desirable.

Compared to ignoring deallocations, both banishing and eager eviction obtain notice-

ably lower rematerialization overhead. This shows that valuable information is captured by

deallocations, and that DTR can make good use of it.

90

0.1 0.3 0.5 0.7 0.9

104

106

InceptionV4 (64)
299x299

0.1 0.3 0.5 0.7 0.9

104

106

108 Transformer (10)
512x512

0.1 0.3 0.5 0.7 0.9
102

103

104

105
U-Net (6)

416x608

0.1 0.3 0.5 0.7 0.9

105

106

107

TreeLSTM
Binary tree of depth 6, node size 640x1

0.1 0.3 0.5 0.7 0.9

103

104

105

106 ResNet-32 (56)
224x224

0.1 0.3 0.5 0.7 0.9

104

106

108 DenseNet-121 (84)
224x224

0.1 0.3 0.5 0.7 0.9
105

106

107

108 LSTM (512)
Input dimension 512,

Hidden dimension 1700,
Sequence length 128

0.1 0.3 0.5 0.7 0.9

105

107

Unrolled GAN
10 steps, 512x512

0.0 0.2 0.4 0.6 0.8 1.0

Memory Ratio

0.0

0.2

0.4

0.6

0.8

1.0

St
or

ag
e

Ac
ce

ss
es

 b
y

H
eu

ri
st

ic

hDTR heq
DTR h local

DTR

Figure 4.10: Total storages accesses incurred by heuristic evaluations and metadata mainte-
nance, compared across different memory ratios, for the 3 main h′DTR variants.

4.5.3 Runtime Overhead

For this experiment, we tracked the number of storage accesses made during evaluations

of heuristics and maintenance of metadata. We chose this metric over wall-clock time,

since our Python implementation of the simulator is not heavily optimized and may not

accurately correspond to the real performance of the runtime. Storage accesses, on the

other hand, do reflect operations that would be performed by a real implementation. For

the hDTR heuristic, this included each storage visited during the updating and rebuilding

procedures for maintaining e∗ for resident storages. For the heq
DTR heuristic, this included

each storage visited whenever the Union-Find data structure was traversed for each evicted

component (which occurs mainly during merging and when reading the compute cost). The

hlocal
DTR heuristic does not need to maintain any non-local metadata. For all heuristics, each

heuristic evaluation counted as one storage access.

As Figure 4.10 shows, the accesses made by each heuristic are generally separated by at

least an order of magnitude. This confirms our intuitions about the runtime overhead of

each heuristic, and supports our choice of heq
DTR as a good middle ground (in terms of both

runtime and computational overhead). However, these overhead figures could be improved

91

with better-optimized implementations of the heuristics, as our implementation recomputes

heuristics often, even when it may be possible to store the scores for tensors and maintain

them in a sorted order. (Reformulating staleness to avoid having to use the current time

might help.) Using persistent data structures that can be incrementally updated and main-

tain a sorted order will make these heuristics much more efficient, though this would also

increase the complexity of the implementation.

4.6 Comparing DTR to Static Techniques

We compared the performance of DTR using hDTR, heq
DTR, and (as a simple baseline) hLRU

against static checkpointing techniques, including the optimal Checkmate tool of Jain et al.

(2019). As Figure 4.11 shows, DTR’s hDTR and heq
DTR heuristics obtain performance re-

markably close to Checkmate’s optimal solutions; even the much simpler hLRU heuristic

obtains superior performance relative to the static baselines. While Checkmate requires

full ahead-of-time knowledge of the model and seconds or minutes per budget to compute

guaranteed-optimal solutions using an integer linear programming (ILP) solver, DTR finds

comparable solutions dynamically and in milliseconds without ahead-of-time knowledge of

the model.

5 Prototype Implementation

We implemented a DTR prototype3 in PyTorch and evaluated its performance on a variety of

models. We chose PyTorch because its eager mode of execution (“define by run”) accomodates

arbitrary control flow in models but makes static analysis more difficult; hence, it is a setting

where DTR’s online nature is an asset. Per the results in Sec. 4, we implemented heq
DTR as the

prototype’s heuristic. The core system was implemented in only 1,161 lines of code and made

no deep modifications to PyTorch’s memory management internals or tensor abstractions,

illustrating the simplicity of our system. The remaining 2,647 lines of changes were primarily

3Publicly available at https://github.com/uwsampl/dtr-prototype

https://github.com/uwsampl/dtr-prototype

92

14 16 18 20 22

1.0

1.1

1.2

1.3

1.4

1.5
VGG16 (256)

224x224

10 20 30 40

1.0

1.1

1.2

1.3

1.4

1.5
MobileNet (512)

224x224

10 15 20 25 30 35 40

1.0

1.1

1.2

1.3

1.4

1.5

 *

** *
**

U-Net (32)
416x608

0.0 0.2 0.4 0.6 0.8 1.0
Budget (GB)

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

rh
ea

d
(×

)

* Linearized adaptation
** AP adaptation

Chen et al. greedy
Chen et al. n
Griewank & Walther log(n)
Checkpoint all (ideal)
Checkmate (optimal ILP)
hDTR

heq
DTR

hLRU

Figure 4.11: DTR’s overhead from operators is competitive with Checkmate’s, which uses
ILP to produce an optimal rematerialization schedule. This comparison extends Figure 5
in Jain et al. (2019) by adding the DTR simulator as a “solver” that translates Checkmate’s
Keras-based graph representation into the DTR simulator’s representation. To produce this
comparison, we modified Jain et al. (2019)’s evaluation artifact because the PyTorch logs in
Section 4.3.6 did not contain some information that past checkpointing techniques require
(such as which backward operators correspond to which forward ones). Also included in the
comparison (from the original experiment) are the Griewank and Walther (2000) Treeverse
algorithm and variants of the Chen et al. (2016) checkpointing algorithm (modified to handle
skip connections like those in ResNet).

boilerplate operator overloads used to dispatch tensor operations through DTR’s core logic.

5.1 Integration into PyTorch

To avoid modifying PyTorch’s core systems, our DTR prototype is implemented as a wrapper

over PyTorch’s existing tensor implementations. Namely, we add a new tensor representation

into PyTorch called a CheckpointTensor, which is simply a wrapper over an existing PyTorch

tensor that additionally tracks the tensor’s parent operation and other metadata (such as

the last access time and the cost of the parent operation, which is timed when the tensor

is first created) and registers the tensor in the DTR runtime system. Timing operators for

metadata purposes simply uses the system clock, hence to guarantee the correctness of these

operator times, we force PyTorch into synchronous execution mode (which ensures that GPU

operators are performed synchronously); we found that DTR was still able to execute models

93

Figure 4.12: We profiled the running time of our prototype for various models and memory
budgets on a machine with an NVIDIA Titan V GPU (CUDA 10.1, CuDNN 7.6.4) and a 16-
core AMD Ryzen Threadripper 1950X on Ubuntu 18.04. The red dotted lines correspond to
trials that either ran out of memory or thrashed (≥ 2× unmodified PyTorch’s time). Model
batch sizes are given in parentheses. To ensure the accuracy of the DTR prototype’s profil-
ing, we used PyTorch’s synchronous computation mode (see Section 5.1). Results (mean of
100 trials) are compared against unmodified PyTorch. “Cost compute” (computing heuristic
scores) and “eviction loop” (comparing scores over tensors) correspond to overhead from the
DTR runtime itself, which can be reduced by a more efficient implementation. “Unprofiled
time” is the remainder of the time per batch; it may be due to runtime overhead from parts
of PyTorch not modified in the prototype, like the operator dispatch system. The large
proportion of unprofiled time in Unrolled GAN is likely due to its extensive use of Python
reflection. The budgets with asterisks were run with the random sampling optimization (see
Section 5.2) disabled, as sampling caused occasional failures at those budgets.

94

on greatly reduced memory budgets without turning on synchronous execution mode, even

though this should skew DTR’s recorded operator times.

For evictions, CheckpointTensors are capable of freeing their underlying tensor repre-

sentation from memory; they keep a closure for replaying the parent operation, which the

runtime can invoke when the tensor must be rematerialized. To handle deallocations by

the original program, CheckpointTensors also report increments and decrements to the

reference count of the underlying tensor to the DTR runtime. We add a method to ten-

sors called “checkpoint()” that lifts any tensor into a CheckpointTensor and a method

“decheckpoint()” that extracts the underlying tensor from a CheckpointTensor, remateri-

alizing it if necessary (we use the latter in our trials to ensure the loss and output are in

memory at the end).

Our modified version of PyTorch dispatches any operation involving a CheckpointTensor

to a specific implementation for CheckpointTensors; this is the same mechanism that Py-

Torch uses, for example, to dispatch operations on GPU-managed tensors to CUDA imple-

mentations. Specifically, whenever PyTorch encounters an operator where an argument is a

CheckpointTensor, its dispatch mechanism searches for a specific overload of that operator

for CheckpointTensors. Since a CheckpointTensor simply wraps the underlying PyTorch

tensor, adding CheckpointTensor implementations for operators simply requires invoking

the operator’s existing implementation for the underlying tensor and wrapping the result in

a CheckpointTensor. These overloads were essentially boilerplate code and it is likely pos-

sible to generate them automatically. As far as PyTorch’s dispatch system is concerned, all

tensor accesses occur through operators, so updating metadata like access time only requires

invoking the DTR runtime inside the CheckpointTensor operator overloads.

The DTR runtime is simply a singleton that keeps a pool of all CheckpointTensors

created since the start of the program. The runtime is also responsible for maintaining

the equivalence class data structure needed for heq
DTR as described in Section 4.3.1 (updated

each time a CheckpointTensor is evicted or rematerialized). Before each CheckpointTensor

operation, the DTR runtime checks whether the memory budget has been exceeded; if it

95

has, the runtime searches over the pool of CheckpointTensors, computing the heuristic

score (heq
DTR) for each using their metadata, and evicting the least-scoring until either it is

not possible to evict any more tensors or the budget has been met. (N.b., this means that

the prototype permits exceeding the budget by exactly one tensor allocation. In principle,

we can correct this by inserting a callback into PyTorch’s GPU memory manager to call

the DTR runtime as soon as an allocation is requested ; we did not do this to simplify our

implementation.) This method of searching is very simplistic; it is likely that redundant

heuristic computations can be removed using data structures to keep CheckpointTensors in

a sorted order and incrementally update metadata, but the optimizations discussed below

in Section 5.2 were very simple and helped to reduce some of the overhead from this naive

method. The DTR runtime is also responsible for implementing the logging mechanism

described in Section 4.3.6; this is accomplished by simply writing JSON records of events

intercepted by the runtime (operator calls, reference count increments and decrements, etc.)

to a file.

The DTR prototype supports PyTorch’s implementation details like in-place mutations,

aliasing, and multiple operator outputs, which are all discussed in Paszke et al. (2017),

using the same methods as in Section 4.3. As in Section 4.3.6, the DTR prototype supports

PyTorch operators that perform in-place mutations by introducing a copy-on-write mutation

layer: The mutating operator is made pure (and therefore infinitely replayable) by copying

the source tensor for the mutation and mutating the copy. (Similarly, impure operators like

batchnorm and dropout are made pure by treating state like the PRNG seed as part of the

input to the operators and the updated state as part of their output.) The DTR runtime

performs these copies for CheckpointTensor operator overloads to mutating operators. To

support operators whose results are aliases of their arguments, the DTR runtime groups

together all CheckpointTensors whose underlying tensors are aliases of each other into alias

pools. When a member of an alias pool is evicted, all members of the alias pool are treated

as evicted; aliases are, however, rematerialized separately, only as they are needed. For

CheckpointTensors produced by multi-output operations, the DTR runtime allows them to

96

be evicted separately but ensures that they are rematerialized together.

5.2 Runtime Optimizations

Searching for tensors to evict is a significant source of overhead for DTR’s runtime because

the runtime recomputes each tensor’s staleness and equivalence class cost upon each evic-

tion, rather than storing and incrementally updating this information. In principle, we could

reduce this portion of the overhead by using more complex data structures to maintain an

ordering of the tensors to avoid searching, though this would greatly increase the complexity

of our implementation. As a simpler means of reducing the DTR runtime’s overhead from

searching and computing heuristic scores, we added two approximate optimizations to re-

duce the search space: ignoring small tensors (less than 1% of the average size) and only

searching over a random sample of
√
n tensors from the pool of n evictable tensors. This

greatly reduces the number of tensors that the runtime needs to check upon evicting. Even

though this improves the search overhead considerably, searching and computing costs still

present considerable DTR-specific overhead, as the profiling breakdown in Figure 4.12 shows.

Additionally, random sampling caused occasional failures at low budgets or very large inputs

due to excluding good eviction candidates from the search space, which led us to deactivate

that optimization in certain trials. (At low budgets, individual eviction choices are very im-

pactful, so removing tensors from the search space completely at random can dramatically

affect the results.)

There are also several possible sources of runtime overhead that could potentially be

improved by making deeper modifications to PyTorch’s core systems. For example, we in-

troduced an overload layer that results in many more layers of callbacks. The mutation

layer also clones tensors (even though it frees the necessary space immediately), resulting

in additional overhead. Further modifications to the framework could allow for more opti-

mizations, particularly by reducing the number of heap allocations and conversions between

tuples and lists. PyTorch’s define-by-run nature and shallow embedding into Python also

meant that much of DTR’s metadata, such as the parent operator of a tensor, needed to be

97

computed at run time (such as by creating a closure). In other frameworks that feature a

compilation step, such as Glow (Rotem et al., 2018), it may be possible to eliminate much

of this overhead by generating these structures in a compiler pass. We may also note that

all the bookkeeping for DTR takes place on CPU while operators are generally offloaded to

other devices, so an implementation could interleave these updates with GPU operations.

5.3 Handling Errors in Trials

As discussed in Table 4.1 and Figure 4.12, the DTR prototype encountered errors on certain

models when running on low budgets or on large input sizes. These errors were primarily

CUDA out-of-memory errors (OOMs), but in some cases, the trial simply hung, neither

crashing nor terminating. For CUDA OOMs, disabling the random sampling optimization

eliminated the errors in most cases, suggesting that the OOMs were due to excluding useful

eviction candidates. For the hanging trials, we were not able to determine whether the

root cause was DTR thrashing (being trapped in a very deep recursive rematerialization,

as occurred in some of the simulated trials on certain heuristics) or an infinite loop or

deadlock elsewhere in PyTorch; we can investigate the cause by further instrumenting the

implementation, but we have been unable to consistently reproduce hanging trials and they

seem to occur less frequently than OOMs.

In the largest two batch sizes for UNet in Table 4.1, disabling sampling did not eliminate

all OOMs or hanging trials. Thus, for the large-input trials in Table 4.1, we employed a

procedure for retrying upon encountering an OOM or a hang. First (as with all other GPU

measurements), we perform some untimed “warm-up” trials to allow for CUDA initialization

and caches to be populated and then begin timing the trials. If a trial raises a CUDA OOM

or hangs (which we define as taking twice as long as the trial before it), we keep the measured

times from that point in the trial and then restart (doing another warm-up), collecting the

remaining number of measurements. Restarting the measurement run was the only way

to ensure that all memory allocated during the trial would be collected in the event of an

OOM (attempts to proceed simply by resetting the PyTorch allocator’s cache resulted in

98

memory accumulating between trials regardless). Our experimental setup automates this

process of retrying failed trials and reports the total number of retries. Note that we treat

failures during warm-up runs the same as failures in timed runs, since recovering from an

OOM would require exiting the process running PyTorch and reinitializing CUDA. In the

Table 4.1 results, there was 1 failed run for UNet on batch size 9 and 10 failures on batch

size 10; most of the latter were during warm-up runs.

A possible reason for the occasional failed trails in UNet may be variance in operator

timings, which affect the metadata and may be influencing rematerialization decisions. One

way to control for this possibility in a static model like UNet would be to use a DTR

simulation to produce a static rematerialization schedule and therefore have a known, safe

execution schedule for operators. For a dynamic model, a static plan is not an option, but

variations in operator timings could be reduced by using a fixed cost model for operators

instead of timing them dynamically. That is, the DTR heuristics employed could be defined

to use proxy measures that are less subject to variation (e.g., defining staleness in terms of a

counter incremented by operations rather than wall-clock time) or less likely to be influenced

by specific system implementation details in order to have more predictable and reproducible

behavior.

5.4 Empirical Results

Our empirical evaluation demonstrates that DTR can efficiently train models under restricted

memory budgets using the heq
DTR heuristic. We used the same models and experimental setup

as in Section 4, timing the forward pass, loss computation, and backward pass. Table 4.1

presents several cases where DTR trains models on much larger input sizes than unmod-

ified PyTorch, including a dynamic model, TreeLSTM. This highlights that DTR enables

exploration of models that push the boundaries of existing deep learning architectures. While

the simulated trials in Section 4 consider the slowdown due only to rematerializations but

not overhead from managing metadata and computing heuristics, Figure 4.12 measures the

time per batch required to train eight DL models on a variety of restricted memory bud-

99

 ResNet-1202 (Batch Size) Transformer (Batch Size) UNet (Batch Size) TreeLSTM (Tree Nodes)

64 100 120 140 30 70 80 90 7 8 9 10 26- 1 27- 1 28- 1 29- 1

DTR 0.974s 1.18s 1.28s 1.39s 367ms 830ms 950ms 1079ms* 566ms 684ms 822ms* 1170ms* 0.486s 1.05s 2.50s 7.89s*

PT 0.712s X X X 331ms X X X 481ms X X X 0.431s X X X

Table 4.1: Median execution times per batch (out of 100 runs) for various models, giving
both the largest input size that unmodified PyTorch (“PT”) could support on our GPU
and larger input sizes DTR could support. Input sizes are as in Figure 4.12, except for
TreeLSTM (complete binary trees with nodes of size 1024×1024) and Transformer (sequence
length 256). Asterisks indicate inputs on which the random sampling optimization was
disabled due to occasional failed trials. Even without sampling, DTR still occasionally
failed on UNet (see Section 5.3 for details). This behavior may be due to PyTorch memory
allocator implementation details or poor rematerialization decisions influenced by variance
in individual operator times.

gets, profiling the time spent by the runtime system. Among the models is Unrolled GAN,

which uses higher-order partial derivatives and Python reflection extensively; the DTR pro-

totype supported these unusual features, underscoring its generality. Despite our prototype’s

simplicity—it merely loops through all tensors when searching for an eviction candidate and

recomputes the heuristic scores from scratch each time—on most models, its overhead due

to searching and computing heuristics remains low for most memory budgets.

6 Summary

DTR provides a simple, customizable approach to checkpointing for DL models. It sup-

ports a broad range of applications without the need for any ahead-of-time analyses, manual

annotations, or modifications. Our formal results establish that DTR can match the same

asymptotic bounds as recent static checkpointing approaches for linear feedforward networks.

In simulation, it enables training for a range of both static and dynamic models under various

restricted memory budgets and closely matches the performance of optimal checkpointing.

The DTR prototype in PyTorch demonstrates how our approach can be incorporated into

existing frameworks with modest, non-invasive changes by simply interposing on tensor al-

locations and operator calls and collecting lightweight metadata on tensors.

100

Chapter 5

SEMANTICS-BASED HARDWARE SEARCH: 3LA

Note: This section is adapted from the previously published work Huang et al. (2022).

This chapter addresses the problem of utilizing new accelerators in DL systems, ap-

proaching it by an approach we call the 3LA methodology, by introducing an IR for rea-

soning about the semantics of accelerator operations and using that to define a search over

possible mappings from the source DSL to hardware operations. This mode of searching

allows for automatically exposing opportunities to invoke accelerator operations that can be

easily extended with new rewrite rules and can be formally verified, allowing for end-to-end

functional verification that includes accelerators.

1 Problem Description

The early success of the GPU in efficiently implementing tensor operations in DL work-

loads (Krizhevsky et al., 2012) underscored the possibilities for hardware to exploit the

parallelism and data transfer behavior of DL models. The increasing economic importance

and growing scales of DL applications have since driven further investment in developing

DL-specific accelerators, notably the Tensor Processing Unit (TPU) (Jouppi et al., 2017),

multiple versions of which have entered production use at Google. By customizing compute

engines, memory hierarchies, and data representations (Chan et al., 2014; Fang et al., 2019;

Lai et al., 2021), hardware accelerators provide efficient computation in various application

domains like artificial intelligence, image processing, and graph analysis (Han et al., 2016;

Chen et al., 2017; Reagen et al., 2016; Zhang et al., 2016; Hameed et al., 2010; Ham et al.,

2016). Accelerators like the TPU tend to have specialized instruction sets intended to best

101

utilize their carefully designed data pipelines, such as commands for reading and writing

tensors and for specifying weights and inputs to the operations implemented in the device.

Executing a complete model using such an accelerator typically requires interacting with a

host device that must invoke the accelerator’s specialized instructions and load in the appro-

priate data to the accelerator; invoking such low-level instructions from the high-level DSLs

used to define DL models poses a considerable challenge. Indeed, large industrial teams

invest substantial resources to address DSL-to-accelerator mapping challenges via bespoke

infrastructure (Jouppi et al., 2017, 2020). For smaller teams, like in the academic research

community (both DL researchers and accelerator researchers), these gaps make end-to-end

evaluation of new accelerator designs prohibitively difficult; many recent papers on accelera-

tor designs only evaluate on small application snippets, e.g., individual layers of deep neural

networks (Tambe et al., 2021; Jia et al., 2020; Park et al., 2021; Rossi et al., 2021; Schmidt

et al., 2021; Whatmough et al., 2019; Fujii et al., 2018; Cao et al., 2020; Giordano et al.,

2021; Saito et al., 2021; Wei et al., 2019; Garofalo et al., 2021). (Note, however, that, as we

explore in Section 5, an accelerator’s results for application snippets are often not predictive

of its influence on overall system behavior, e.g., due to cumulative effects of custom numerical

representations, further motivating the need to more easily enable end-to-end execution.)

Incorporating an accelerator into a complete DL workload requires mapping the com-

putations within a model to those supported by the accelerator, if possible, which requires

developing a compiler from an IR to that device. In current practice, this is generally

accomplished by manually crafting device drivers to provide “hardware function calls” for

specific operations. This essentially provides an application-programmer interface (API) for

accelerators, where each hardware function call consists of low-level accelerator invocation

commands that configure, initiate, validate, and return the results. Figure 5.1 shows an

example hardware function call, in which a layer reduction operation is implemented by a

sequence of memory-mapped input/output (MMIO) loads/stores from the host processor

to invoke the FlexASR accelerator (Tambe et al., 2021). Such MMIO-based APIs are the

prevalent mechanism for accelerator invocation.

102

#define HWREG(addr) (*((volatile uint128_t *)(addr)))
union buffer128 {
uint128_t v128;
int64x2_t v64;
} buf;

// FlexASR API: Layer Recude (max/min/mean pooling)
bool FlexAsrLayerReduce(uint64_t* arg1 , /* ... */) {
// set up inputs and arguments
buf.v64[0] = 0xC9A8070100CA8801;
buf.v64[1] = 0x09D1008100810000;
HWREG(0 xA0500000) = buf.v128; // internal buffer [0]
// ...
// configure and invoke operation
buf.v64[0] = 0x0101000000010001;
buf.v64[1] = 0x0000000200000001;
HWREG(0 xA0700010) = buf.v128; // global buffer control
buf.v64[0] = 0x0000000000000001;
buf.v64[1] = 0x0000000000000000;
HWREG(0 xA0400010) = buf.v128; // memory manager config
buf.v64[0] = 0x0000000000000000;
buf.v64[1] = 0x0000000000000000;
HWREG(0 xA0000010) = buf.v128; // invoke operation
// wait and retrieve results from the buffer
sleep (5);
buf.v128 = HWREG(0 xA0500000);
// ...
}

Figure 5.1: Snippet of the FlexASR device driver (Tambe et al., 2021). Through MMIO
commands, the driver first stores input arguments, e.g., weights, in the accelerator’s internal
buffer (lines 10 to 13). It then sets up the configuration such as tensor dimension and vector
size (lines 15 to 20). Finally, it triggers the operation (line 23) and retrieves the result
(starting line 26).

103

Generally, hardware function calls are manually added by application programmers, or

they can be added by compilers via handcrafted accelerator-specific extensions. Such be-

spoke compiler extensions demand tedious effort and deep expertise in the hardware and the

compilation stack. Large differences among accelerators’ supported operations, performance

characteristics, choices of numerical representation, and memory capacities demand even

greater expertise in order to achieve some degree of interoperability and ensure a system can

utilize different devices. Such implementation hurdles could prevent optimal use of avail-

able accelerators and slow the integration of new accelerators into existing systems, stifling

further potential innovation in hardware and potentially restricting model performance in

production systems; as it stands, only large enterprises that can afford teams of hardware,

software, and systems experts for high-value applications can readily make use of diverse

accelerators (Caulfield et al., 2016; Fowers et al., 2018; Jouppi et al., 2017).

The approach of API-based hardware function calls presents two fundamental challenges:

1. Lack of portability. Each API call is specialized to a particular device, whose in-

terfaces may differ significantly even from other devices that may implement similar

functionality due to hardware implementation details. These differences in interface

must also be managed between the source DSL and the target device.

2. Lack of integration into standard compiler flows. The MMIO interfaces for ac-

celerators are typically not as well-defined as traditional software/hardware interfaces;

API calls are opaque to the compiler stack. For example, standard techniques for in-

struction selection (Blindell, 2016) become challenging with a “black-box” API, which

provides little flexibility in selecting and reusing parts of these APIs. The fixed API

also limits automation in exposing potential optimizations, e.g., operator fusion that

may minimize data transfers.

As a consequence of these challenges, it is additionally difficult to validate compilation results,

which results in development issues of its own. Validating the compilation results requires

104

(manually) porting over entire applications to use the appropriate API calls, which incurs

some development effort (as opposed to portable code that is well-supported by compilers,

which would allow the original program implementation to be reused verbatim). Moreover,

even after the application is ported, the costs of hardware manufacturing mean that early

testing must be done using either an FPGA emulation of the accelerator or a low-level

register-transfer level (RTL) simulation; the former requires further engineering effort, while

the latter is often prohibitively slow. Furthermore, the need for a fully functional RTL

model limits early-stage software/hardware co-design, i.e., software development before the

hardware is implemented.

At the heart of these issues in compiling to accelerators is the difficulty in reasoning about

the semantics of accelerator operations. We propose to address this problem through the

introduction of a new IR that will serve as a formal model for accelerators, rather than ad

hoc API-supported hardware function calls. To motivate this approach, consider the more

restricted problem of portably compiling programs to different CPUs, which was addressed

by LLVM (Lattner and Adve, 2004). With LLVM, programs can more easily be compiled to

different CPUs by first compiling programs into a common representation, leaving the less

laborious task of writing compilers from LLVM to the CPUs. However, the reason the task of

compiling from LLVM to different CPUs was comparatively simple is that LLVM itself was

designed to be similar to the instruction sets of various CPUs. In the case of accelerators,

however, the large differences among devices suggest the need for a representation sufficiently

general to account for those differences—a formal model for the semantics.

The analogous representation can therefore be ceonceived as an accelerator instruction

set, providing an ISA-like formal model for accelerator operations, providing finer-grained,

instruction-level control over accelerator operations (in contrast to API calls). The formal

model for the accelerator operations can be combined with a semantics for the program-

level IR to reason about the end-to-end computation, suggesting the possibility of automatic

analysis of the input program’s semantics to identify opportunities to invoke accelerators.

We term the use of an instruction-level formal representation for compiling to accelerators

105

the 3LA methodology. In the following sections, we explore how this explicit model for

accelerator operations facilitates standard compilation flows, portability, and validation of

compilation results.

2 Overview

The 3LA methodology uses an instruction-level formal software/hardware interface speci-

fication for accelerator operations, which abstracts away low-level implementation details

while providing a formal hardware semantics. This representation enables flexible mappings

between instruction-level program fragments, easy integration into compiler flows, and end-

to-end validation of compilation results that take the accelerator operations’ semantics into

account.

2.1 Key Ideas

Identifying the computation in the application that can be offloaded to the accelerators

is effectively seeking mappings between compiler IR intrinsics and the accelerator opera-

tions such that they are functionally equivalent and lead to performant code. (Note that

in certain domains like machine learning, small numerical differences may not affect the

application-level results, such as a classification category, so notions of “equivalence” should

reflect this property.) In the 3LA methodology, we use the Instruction-Level Abstraction

(ILA) (Huang et al., 2018b), for this purpose. The ILA, like the ISA for processors, provides

a software/hardware interface specification for accelerators. It bridges the gap between the

compiler IR intrinsics on one hand and the accelerator operations on the other—providing

the basis for specifying IR-accelerator mappings.

The ILA model of an accelerator provides formal semantics at its software/hardware

interface through a lifting of the accelerator operations in the form of a set of abstract in-

structions, each of which reads and updates the accelerator arthiectural state according to

transition functions. Similarly, the compiler IR intrinsics can also be defined as ILA in-

structions that update program state. This provides a uniform model for both the compiler

106

IR and the accelerator operations. We can therefore define the mappings of compiler IR in-

structions to accelerator operations as pairs of program fragments, where a program fragment

comprises a sequence of instructions. Unlike API calls or RTL models, program fragments

using accelerator ILA instructions capture the underlying accelerator operation semantics

while abstracting over low-level hardware implementation details.

Given the definitions of IR-accelerator mappings in terms of program fragments, we can

approach the problem of instruction selection as term rewriting (Dershowitz, 1993; Baader

and Nipkow, 1998; Blindell, 2016), namely by replacing a compiler IR fragment with the cor-

responding accelerator operation fragment. Specifically, we utilize equality saturation (Tate

et al., 2011) to optimally1 match all the different possible rewrites of the program and there-

fore reduce the need for manual program restructuring (improving portability and increasing

the amount of compiler automation). Additionally, since the accelerator ILA models the

semantics of accelerator calls and captures their interface, the 3LA methodology is also ca-

pable of implementing optimizations that require understanding of accelerator behavior, e.g.,

operator fusion for reducing data movement.

Because the ILAng (Huang et al., 2019) toolchain allows for synthesizing functional sim-

ulators for ILA instructions, modeling accelerator operations using the ILA means that it

is possible to efficiently (in comparison to RTL simulation) simulate accelerator operations

and therefore validate the results of end-to-end applications earlier in development. This

capability is useful not only for validating the results of end-to-end applications, but also for

prototyping and exploring software/hardware co-design, since an ILA specification can be

written and analyzed while the hardware design is still in progress. The formal semantics of

ILA instructions also allow for formal verification of mappings and instructions by techniques

like bounded model checking, which we will explore in Section 5.

107

Flexible matching
using equality saturation

; Host CPU instructions

CMP r0, r1

SUBGT r0, r0, r1

BNE loop

; Invoke accel. (MMIO)

STR r2, 0xffff0000

STR r3, 0xffff0100

LDR r4, 0xffff0010

; Host CPU instructions

MOV r3, r2

SUBGT r0, r0, r1

B lr

Code
generation

Application program
(translated to compiler IR)

Program
extraction

All possible (equivalent)
program rewrites

Best rewritten program
(w.r.t. the cost function)

Compiled program
(executable binary)

2. IR-Accelerator rewrites1. Compiler IR rewrites

Compiler IR pattern Accelerator ILA
program fragment

Rewrite rules

Compiler IR pattern Compiler IR pattern

Figure 5.2: 3LA compilation flow overview. Note that the ILA modeling and the validation
of the IR-accelerator mappings are omitted from this figure.

2.2 Overall Compilation Flow

The overall compilation flow using the 3LA methodology is shown in Figure 5.2. We first

translate the application program, provided in a high-level DSL, into the compiler IR. Next,

we perform equality saturation to search a large space of equivalent programs given the

compiler IR-accelerator mappings (along with general-purpose rewrite rules). Based on a

given cost function, we then extract the lowest-cost program and pass it on for code genera-

tion, where each accelerator instruction is subsequently lowered to the corresponding MMIO

command. This generated program executes on the host processor and invokes accelerator

operations through MMIO commands.

2.3 Prototype Implementation

As a demonstration of the 3LA methodology, we have implemented an end-to-end compi-

lation flow for deep learning (DL) applications by integrating it with an existing compiler

flow. Specifically, our prototype compiler utilizes the DSL front-end and the code generation

1In terms of a provided cost function, and with respect to the rewrites actually performed in cases where
the e-graph is not saturated.

108

capabilities provided by the TVM framework (Chen et al., 2018a). For instruction selection,

it leverages the rewrite rules and the equality saturation engine provided by Glenside and

egg (Smith et al., 2021; Willsey et al., 2021).

We show the generality of the 3LA methodology through multiple case studies. At the

front-end, we consider six DL applications for language processing and image recognition,

e.g., Transformer (Vaswani et al., 2017) and ResNet (He et al., 2016a). For the target ac-

celerators, we add support for three custom accelerators that provide hardware operations

at different levels of granularity: VTA (Moreau et al., 2019) is a fine-grained accelerator for

general tensor operations; HLSCNN (Whatmough et al., 2019) is a coarse-grained acceler-

ator providing 2D convolutions; FlexASR (Tambe et al., 2021) is an accelerator for speech

recognition, specializing in coarse-grained operations like long short-term memory (LSTM)

layers.

We added support for the three accelerators—developed their ILA models, provided com-

piler IR-accelerator mappings for operations supported by them, and validated all the map-

pings. Note that this work for supporting a new accelerator is a one-time effort that can be

reused across different applications. Our prototype compiler successfully compiled all six DL

applications (developed by different teams and programmed in different DSLs) for exploiting

the three custom accelerators. Our prototype and case studies demonstrate the key ideas in

the 3LA methodology for end-to-end compilation with validated results. We do not claim

this prototype provides a complete, fully optimized compiler for custom accelerators; rather,

it establishes the foundations for validated compilation for such targets through the use of a

formal instruction-level software/hardware interface for accelerators.

3 The 3LA Methodology

In this section, we explain in detail the three key aspects of the 3LA methodology:

1. adding accelerator support by specifying mappings between compiler IR intrinsics and

accelerator operations,

109

2. compiling applications by searching within input programs for computations supported

by accelerators, and

3. ensuring compilation result validation and supporting early-stage software/hardware

co-design.

3.1 Specifying IR-Accelerator Mappings using ILAs

The ILA is an ISA-like formal model for specifying the functional behavior of accelerators.

It generalizes the notion of instructions to accelerators and provides a modular functional

specification as a set of instructions. Like processor ISAs, it does so by specifying how

each instruction updates software-visible (viz., architectural) state while abstracting out

implementation details.

3.1.1 Accelerator ILA

We develop the ILA formal model for an accelerator by following the methodology proposed

in prior work (Huang et al., 2018a). Each instruction of an accelerator ILA corresponds

to a command at the accelerator interface, i.e., an MMIO load or store command. The

ILA captures formal semantics of accelerator behavior by specifying how each instruction

reads/updates the architectural state variables. Essentially, the ILA is a modular (per-

instruction) operational specification of an accelerator. Figure 5.3 provides an accelerator

ILA example.

3.1.2 Compiler IR ILA

While the ILA is primarily intended to serve as the formal model for accelerators, it is conve-

nient to also use it to formally model compiler IR intrinsics. We develop the compiler IR ILA

by following the approach used in prior work for the NVidia parallel execution thread (PTX)

programming model (Xing et al., 2018). Each instruction of a compiler IR ILA corresponds

to an IR intrinsic and specifies its operational behavior in terms of how it updates program

110

#include <ilang/ilang ++.h>

int main() {
// declare an ILA model module
auto m = ilang::Ila("flexasr -ila");

// declare model interface input ports
m.NewBvInput("top_if_wr", TOP_IF_WR_BITWIDTH);
m.NewBvInput("top_if_rd", TOP_IF_RD_BITWIDTH);
m.NewBvInput("top_addr_in", TOP_ADDR_IN_BITWIDTH);
m.NewBvInput("top_data_in", TOP_DATA_IN_BITWIDTH);

// declare architectural states
m.NewBvState("pe_0_is_valid", PE_VALID_BITWIDTH);
m.NewBvState("pe_0_is_bias", PE_IS_BIAS_BITWIDTH);
...
m.NewMemState("gb_large_buffer", TOP_ADDR_IN_BITWIDTH , TOP_DATA_IN_BITWIDTH);
...
// define ILA instructions
{ // ILA instruction for configuring pe_cfg_mngr
auto instr = m.NewInstr("pe_0_cfg_mngr");

// define decode condition for this instruction
auto is_write = (m.input("top_if_wr") == 1) & (m.input("top_if_rd") == 0);
instr.SetDecode(is_write & (m.input("top_addr_in") == PE_0_CFG_MNGR_ADDR));

// define state update functions for this instruction
auto is_valid = ilang:: SelectBit(m.input("top_data_in"), PE_IS_VALID_BIT_IDX);
instr.SetUpdate(m.state("pe_0_is_valid"), is_valid);
auto is_bias = ilang:: SelectBit(m.input("top_data_in"), PE_IS_BIAS_BIT_IDX);
instr.SetUpdate(m.state("pe_0_is_bias"), is_bias);
...
}
// other ILA instructions
...
}

Figure 5.3: FlexASR ILA model snippet. Lines 5-18 define the FlexASR ILA model,
its input and architectural states variables. Lines 20-32 shows an example of an ILA in-
struction named “pe_0_cfg_mngr,” which corresponds to line 6 in Figure 5.4 (c). In each
ILA instruction, we specify its decode condition and state update functions. For example,
in this instruction, the decode condition (line 24-25) is when there is write instruction at
the top interface to the address associated with the configuration of the PE’s management
configuration. Lines 27-32 show this instruction’s state update functions for the architectural
states. In this example, this ILA instruction models the behavior of storing the arguments
from the input data at its interface into the FlexASR configuration registers. From this
example, we can see that the ILA instructions provide an abstraction of the functionality of
the accelerator corresponding to the MMIO instructions at its interface.

111

state. Modeling both the compiler IR and accelerators using ILAs provides a uniform model

on both sides, and enables the use of the ILAng toolkit for their verification/validation.

3.1.3 IR-Accelerator Mappings

Due to the granularity gap between the IR instrinsics and the accelerator operations, it is

often not possible to construct a one-to-one mapping between the compiler IR and the accel-

erator operations. Instead, on each side (the compiler IR and the accelerator), we consider

a program fragment that comprises a sequence of instructions defined by the associated ILA

model. The program fragments provide a basis for many-to-many instruction mappings be-

tween the two sides, providing flexibility that is key to addressing the granularity mismatch

challenge.

The specification of the mappings starts from the accelerators—based on the given accel-

erator, we provide an IR-accelerator mapping for each accelerator operation. This bottom-up

approach is a one-time effort for each accelerator, requires no knowledge of the input pro-

gram, and is the key for modular and extensible compilation.

Figure 5.4 shows an example of an IR-accelerator mapping for a linear layer operation for

the FlexASR accelerator (Tambe et al., 2021). The program fragments of the compiler IR and

the accelerator are shown in parts (b) and (c), respectively. As discussed, each instruction of

the compiler IR ILA corresponds to one IR intrinsic, which is reflected in parts (a) and (b).

Similarly, each instruction of the accelerator ILA corresponds to one command at its MMIO

interface, as shown in parts (c) and (d).

3.2 Flexible Matching using Equality Saturation

Given the IR-accelerator mappings and an input program, the next step in the 3LA method-

ology is to identify computations in the input program that can be offloaded to equivalent

accelerator operations. We approach this task by utilizing term rewriting techniques—given

a set of syntactic rewrite rules (` =⇒ r), rewrite instances of pattern ` in the input program

with pattern r where applicable (Dershowitz, 1993; Baader and Nipkow, 1998; Blindell, 2016;

112

(a) Compiler IR instructions

ComILA.relay_nn_dense
ComILA.relay_bias_add

(b) Compiler IR ILA program fragment

// 1. writing data into the accelerator memory
FlexASR_ILA.write_v
...
// 2. configuring the accelerator for executing linear layer operation
FlexASR_ILA.pe_cfg_rnn_layer_sizing
FlexASR_ILA.pe_cfg_mngr
FlexASR_ILA.pe_cfg_act_mngr
FlexASR_ILA.pe_cfg_act_v
FlexASR_ILA.gb_cfg_mmngr_gb_large
FlexASR_ILA.gb_cfg_gb_control
// 3. triggering the accelerator linear function
FlexASR_ILA.fn_start
// 4. reading data out from the accelerator memory (if needed)
FlexASR_ILA.read_v
...

(c) FlexASR ILA program fragment

// 1. writing data into the accelerator memory
Write , addr=0xA4500000 , data=0 x0F0EFFBF8F746F9FB58D148E0EB7BFDAD
...
// 2. configurating the accelerator states for linear layer operation
Write , addr=0xA4400010 , data=0 x0010101000001
Write , addr=0xA4400020 , data=0 x0000000010000000102020200
Write , addr=0xA4800010 , data=0 x0000000000102050001
...
// 3. triggering the accelerator function
Write , addr=0xA3000010 , data=0x1
// 4. reading data out from the accelerator memory (if needed)
Read , addr=0xA3500200 , data=0x0
...

(d) FlexASR MMIO commands

Figure 5.4: IR-accelerator mapping for the FlexASR linear layer operation. This shows a many-
to-many mapping from Relay IR instructions to a sequence of FlexASR MMIO commands. (a) A Relay
linear layer consists of a linear transformation operation nn.dense, followed by a bias addition operation
nn.bias_add. (b) The compiler IR ILA instruction has a one-to-one mapping to the compiler IR instruction.
(c) The FlexASR ILA program fragment in its assembly format: It includes: (1) writing instructions to
transfer the data into FlexASR’s memory; (2) setting up FlexASR LinearLayer configuration states, for
example, the instruction at line 5 sets the states of FlexASR layer sizing information; (3) an instruction
that triggers the FlexASR LinearLayer computation; and (4) reading data out from FlexASR’s memory if
needed. (d) The MMIO commands for FlexASR have a one-to-one mapping to its ILA.

113

Tate et al., 2011). In term rewriting systems, the application of rewrite rules is correct by

construction as long as the rules preserve semantic equality. This provides for modular cor-

rectness checking through checking the individual rewrite rules, and allows for easy extension

by adding in new rewrite rules (which automatically take advantage of the existing ones).

Classic term rewriting systems often suffer from the phase ordering problem (i.e., the

order in which rewrites are applied affects final performance) and thus require careful order-

ing (Whitfield and Soffa, 1997; Newcomb et al., 2020).

In 3LA, we utilize the technique of equality saturation to mitigate phase ordering prob-

lems (Tate et al., 2011). Given an input program p, equality saturation repeatedly applies

the given rewrite rules to explore all equivalent ways to express p (with respect to the rules).

It utilizes the e-graph data structure to efficiently represent an exponentially large set of

equivalent program expressions (Nelson and Oppen, 1980; Nieuwenhuis and Oliveras, 2005).

Upon reaching a fixed point, i.e., when no application of any rewrite rule can introduce a

new program expression, or upon reaching some time or resource threshold, it extracts the

optimal rewritten program according to a given cost function. This provides for searching

over a large space of rewrites (a complete space if a fixed point was reached) and finding the

representative most suitable for the given purpose without sophisticated ordering consider-

ations.

3.2.1 IR-Accelerator Rewrites

Based on the provided IR-accelerator mappings, we derive a set of rewrite rules where the left-

hand side of the rule is the compiler IR pattern and the right-hand side is the corresponding

accelerator instructions. Applying these rules, which we call the IR-accelerator rewrites,

allows replacing the computations that are exact syntactic matches to the compiler IR pattern

specified in the mappings by the corresponding accelerator operations. We call the direct,

destructive application of rewrite rules exact matching.

114

3.2.2 Flexible Matching and Compiler IR Rewrites

Exact matching provides a baseline matching capability but may be limited in practice

because there is often no canonical IR expression to represent a program. Therefore, the

input program can have constructs that are syntactically different from the left-hand side of

the IR-accelerator rewrites but are semantically equivalent to the pattern. For example, in

the IR-accelerator mapping shown in Figure 5.4, we specify the compiler IR pattern for a

linear layer (as an S-expression):

(bias_add (nn_dense %a %b) %c).

However, a linear layer can be equivalently expressed in Relay as

(add (reshape (nn_dense %a %b) %s) %c)

when %c is a vector, for certain shapes %s. This prevents exact matching from identifying

potential accelerator calls.

A possible means of dealing with equivalent patterns as in the above case may be to

enumerate all the different variants of interest and search for all of them in exact matching.

While this approach would be feasible for the given linear layer example, larger and more

complex patterns (such as LSTM operations) would be likelier to have many equivalent

variants and would be tedious to manually enumerate. In general, enumerating equivalent

rewrites is error-prone and not guaranteed to be complete. Instead of this approach, we

propose to use rewrite rules to reason about what patterns are equivalent. Namely, we

include another set of rewrite rules that we call compiler IR rewrites. Each compiler IR

rewrite transforms an IR pattern into another IR pattern, e.g., from the second to the

first linear layer IR pattern above, without replacement by accelerator instructions. These

general-purpose rewrite rules do not depend on the input program nor on the accelerator,

but help expose more potential matches, as with the “exploratory rewrites” in Smith et al.

115

(2021). We refer to this as flexible matching, as it enables finding matches that may be

missed by exact matching.

Flexible matching takes advantage of the ability of equality saturation to non-destructively

search over different applications of rewrite rules. Compiler IR rewrites would, in the exact

matching setting, be prone to phase ordering issues; however, in an e-graph, many different

applications of these exploratory rewrites can be considered simultaneously during the ex-

traction phase. This is particularly important in the case where there are multiple different

IR-accelerator rewrites in the resulting e-graph (especially if compiler IR rewrites reveal some

of these opportunities): The e-graph representation allows for explicitly choosing between

the calls based on the cost function, rather than implicitly via the phase ordering.

3.3 ILA-Based Compilation-Results Validation

The formal semantics of ILA instructions provides the foundation for validating compilation

results. The 3LA methodology does compilation results validation at two levels.

3.3.1 Checking IR-Accelerator Mappings

The use of term rewriting provides for modular validation in the form of checking end-to-end

compilation correctness by verifying individual rewrite rules. In 3LA, we focus on the verifi-

cation of IR-accelerator mappings from which IR-accelerator rewrites are derived. Checking

and inferring rules between compiler IR patterns is not the focus of this methodology (Nandi

et al., 2021; Bansal and Aiken, 2006; Menendez and Nagarakatte, 2017).

Verifying an IR-accelerator mapping consists of three verification tasks, as illustrated

in Figure 5.5. In VT1 and VT3, we directly compare the compiler IR and the accelerator

IR against the compiler implementation and the accelerator implementation, respectively.

Between the compiler IR and accelerator IR, VT2 checks the equivalence between a compiler

IR ILA program fragment and an accelerator ILA program fragment. This is an instruction-

sequence-to-instruction-sequence verification, typically over short program fragments that

correspond to operations instead of a whole application.

116

// (a) Compiler IR pattern
%1 = nn_dense(%2, %3)
%4 = bias_add(%1, %5)

// (d) Accelerator invocations (MMIOs)
WR 0xA1040010, 0x0100102040001001
WR 0xA1040020, 0xFFFF49DE5F5C0010
WR 0xA1080010, 0x010210403301FFFF
WR 0xA0040010, 0x0000000102040001
WR 0xA0070010, 0x004008101000000A
WR 0xA0000010, 0x0000000000000001

// (b) Compiler IR ILA program fragment
comILA.nn_dense %arg1 %arg2 %arg3
comILA.bias_add %arg4 %arg1 %arg5

// (c) Accelerator ILA program fragment
accILA.cfgPELayDims %dim1 %dim2
accILA.cfgPEManager %addr1 %addr2
accILA.cfgPEActions %addr3 %addr4
accILA.cfgGBMemIdxs %midx1 %midx2
accILA.cfgGBControl %opcode
accILA.triggerStart

Verification task 1 (VT1)
• Compiler IR ILA vs. compiler implementation
• Modular, per-instruction check

Verification task 2 (VT2)
• Program fragments equivalence checking
• Sequence to sequence checking

Verification task 3 (VT3)
• Accelerator ILA vs. RTL implementation
• Modular, per-instruction check

Figure 5.5: A simplified version of Figure 5.4 highlighting the verification tasks in the IR-
accelerator mapping for the FlexASR linear layer operation.

117

Proof-Based Formal Verification The formal semantics of ILA instructions allows for

formally verifying the IR-accelerator mappings. For VT1, the equivalence between compiler

IR intrinsics and compiler IR ILA instructions can be checked using software model checking

tools (e.g., CBMC and SeaHorn (Clarke et al., 2004; Gurfinkel et al., 2015)) by translating

ILA models into software models, as has been done in prior work (Huang et al., 2018a).

For VT2, the two program fragments can be encoded into Satisfiability Modulo Theories

(SMT) formulas (e.g., via unrolling the instructions) and their equivalence checked using an

SMT solver such as Z3 (de Moura and Bjørner, 2008). For VT3, the refinement checking

between the accelerator ILA (specification) and the accelerator RTL (implementation) has

been shown successfully in prior work (Huang et al., 2018a) that leverages processor verifi-

cation techniques (Burch and Dill, 1994; Manolios and Srinivasan, 2008). We provide a case

study for VT2 in Section 5 that focuses on verifying equivalence of the operator definitions in

the two program fragments over abstract data types, thus avoiding dealing with differences

in numerics which are the focus of the simulation-based validation.

Simulation-Based Validation The 3LA methodology also supports checking simulation-

based validation. This is highly automated as the ILAng platform (Huang et al., 2019) can

automatically generate an executable software model (in C++/SystemC) of a program of

ILA instructions. These executable models capture the precise definitions of the numerics

used by the accelerator. For VT1, the simulation of ILA instructions is checked against

the execution of the corresponding IR intrinsics (i.e., the original compiler-generated code).

For VT2, we compare the simulation of two ILA program fragments. For VT3, the ILA

simulation can be checked against RTL simulation of the accelerator implementation.

3.3.2 Application-Level Co-Simulation

Verification at the application level, e.g., examining the final accuracy of an inference model

instead of its individual layers, is especially critical for exploiting accelerators that utilize

custom data representations. While such accelerators gain power-performance efficiency by

118

Relay
program

Glenside
program

Flexible matching
(using eq. sat.)

Rewritten Glenside
program

Annotated
Relay program

Code-gen.
(using BYOC)

Translate Translate

Extract

FPGA
emulation

Compiler IR
rewrites

Compiler IR-accelerator
rewrites/mappings

PyTorch

MxNet

Relay

Applications
in DSLs

TVM model
importer

Simulation-based
validation

Proof-based formal
verification

Application-level
simulation

VTA

HLSCNN

FlexASR

AcceleratorsGlenside/egg ILAng

TVM

ILA models

Figure 5.6: Prototype implementation of the 3LA compilation flow.

leveraging custom data types, they may introduce modest numerical mismatches at every

operation that can accumulate and alter the application-level result. Thus, the IR-accelerator

mapping validation for a pair of program fragments (Section 3.3.1) can at best check that

the numerical differences for the computation in these fragments is within a certain range.

Unfortunately, this provides no guarantee of the correctness at the application level and,

therefore, requires the application-level co-simulation capability enabled by the use of the

ILA models. In the 3LA methodology, application-level co-simulation can be achieved simply

by executing the full application’s code invoking the ILAng-generated simulator whenever

an accelerator call is desired.

4 Prototype Implementation

As a demonstration of the 3LA methodology, we have implemented an end-to-end compilation

flow for DL applications by integrating with existing compiler frameworks. Figure 5.6 shows

the workflow of our prototype.

4.1 DSL Front-End

TVM is a compiler framework for DL applications that provides various capabilities for

expressing and optimizing DL applications (Chen et al., 2018a). Here, we make use of TVM’s

model importer as the front-end for DSL programs. The importer supports taking programs

119

written in mainstream DL frameworks and interchange formats (e.g., ONNX (ONNX, 2019),

PyTorch (Paszke et al., 2019a), and TensorFlow (Abadi et al., 2016)) and translating them

into Relay, the top-level IR used in TVM (Roesch et al., 2019).

4.2 Flexible Matching

We leverage the egg library for equality saturation in our prototype (Willsey et al., 2021).

First, the input program is translated from Relay to Glenside, a pure (side effect–free) tensor

program representation that supports specifying rewrite rules for tensor programs (Smith

et al., 2021). Next, with both the compiler IR rewrites and IR-accelerator rewrites provided

in Glenside, the equality saturation engine explores the space of possible rewrites as discussed

in Section 3.2. Upon reaching a fixed point, a rewritten program is extracted based on a given

cost function. Here, as a proof of concept, we implemented a cost function that maximizes

the number of accelerator operations; cost functions that correspond to measures of real-

world performance are out of scope for the initial prototype of 3LA, since there are many

more complicated considerations that would be difficult to model (such as timing properties,

cache sizes, and communication costs).

4.3 Code Generation

Once flexible matching completes, the extracted rewritten program is translated back to

Relay where accelerator instructions are specially annotated. In our prototype, we use TVM’s

Bring Your Own Codegen (BYOC) interface to implement the generation of those accelerator

instructions (Chen et al., 2021). BYOC allows for invoking the target interface of a custom

execution mechanism (e.g., an accelerator’s MMIO loads/stores) by having TVM’s runtime

defer execution to a user-specified runtime when it reaches an annotated portion of the

program, following the process illustrated in Figure 5.7.

In the first step, shown in part (a), user-specified syntactic patterns are matched against

an input Relay program. The patterns correspond to operations supported by the target

120

%a = conv2d(%data, %w1);
%b = softmax(%a);
%c = relu(%b);
%d = nn.dropout(%c);
%e = relu(

conv2d(%d, %w2) + %bias
);

%a = (fn(%x, %y,
codegen=“custom conv2d”

){conv2d(%x, %y)}
)(%data, %1);

%b = softmax(%a);
%c = (fn(%z,

codegen=“custom relu”
){relu(%z)}
)(%b);

%d = nn.dropout(%c);
%e = (fn(%x. %y. %z,

codegen=“custom relconv”
){relu(conv2d(%x, %y) + %z)}
)(%d, %w2, %bias);

conv2d(*, *)

relu(conv2d(*, *) + *)

relu(*)
extract executable.c

metadata.json

generate

(a) Pattern matching (b) Annotated functions

Figure 5.7: An illustration of the BYOC process, using an example similar to that in Chen
et al. (2021).

device. In Figure 5.7, we assume that the device supports ReLU and 2D convolution op-

erators, as well as a special combination of ReLU and a 2D convolution as one operation

(hence, the pattern-matching step can match AST subtrees comprised of more than a single

operator call). In the second step, each AST subtree matched is extracted as a specially

annotated Relay function, as shown in Figure 5.7(b). In the third step, when the Relay pro-

gram is compiled, the annotated functions are passed to the custom code generator. BYOC

supports two usage modes for the generated code:

1. The generated file is the source of an executable (e.g., in C) that will invoke the target

device’s interface to implement the semantics of the matched function. The files will be

compiled into binaries, which the TVM runtime will invoke when hitting an annotated

function, thereby deferring execution to the generated code.

2. The generated file is device- or library-specific metadata (e.g., in JSON) that will be

passed to a user-defined custom runtime. When the TVM runtime hits an annotated

function, it will defer execution to the custom runtime. In our prototype implementa-

tion, we use this execution mode to implement just-in-time (JIT) code generation to

allow for conveniently passing data values to ILA simulators.

Here, we implemented a custom runtime that invokes the accelerator implemented on an

121

FPGA (Section 5.3.2) as well as the ILAng-generated simulators (see below), producing the

necessary ILA instructions at run time using the second execution mode. The JIT approach

helps prototyping as it allows for easily inspecting intermediate values in the program and

simplifies the implementation, but introduces overhead from communication between the

TVM runtime and our custom 3LA runtime. In principle, this overhead can be eliminated

by using BYOC’s ahead-of-time compilation mode.

Note that BYOC’s pattern-matching phase is handled by a dataflow-based DSL provided

in TVM (Contributors, 2020), essentially corresponding to the exact syntactic matching

strategy. This language allows for specifying patterns containing operator calls, function

literals, tuple literals, and wildcards, as well as the disjunction of multiple patterns; for

example, the pattern conv2d(*, *) will match any call to conv2d in the source program. It

is also possible to match for the disjunction of two patterns, p1 | p2. The pattern language

can also check for particular operator attributes (e.g., the stride length for a convolution)

or numerical representations to allow for conditional matches. In Figure 5.7, the patterns

matched are conv2d(*, *), relu(*), and relu(conv2d(*, *) + *). Patterns in Relay are

matched by converting Relay programs into a dataflow graph representation, annotating the

entry and exit points of the subgraphs described by the patterns, and subsequently extracting

those subgraphs into Relay functions with annotations that indicate to TVM’s runtime when

to defer execution to the custom-generated code.

While we implemented our exact matching trials using a slightly modified version of

BYOC’s normal pattern-matching interface, we implemented flexible matching by using

Glenside to perform all the necessary rewrites and then converting the final Glenside program

into a Relay program with BYOC annotations.

4.4 ILA Modeling and Correctness Verification

We utilize ILAng, an open-source platform for ILA-based modeling and verification, for

developing the ILA models and performing ILA-based verification/validation (Huang et al.,

2019). ILAng provides support for the following capabilities:

122

Table 5.1: End-to-end compilation statistics.

Application Statistics
1 Application EfficientNet LSTM-WLM MobileNet V2 ResMLP ResNet-20 Transformer
2 Source DSL MxNet PyTorch PyTorch PyTorch MxNet PyTorch
3 #Relay Ops 232 578 757 343 494 872

Number of Static Accelerator Invocations using Exact Matching/Flexible Matching
4 FlexASR 0/35 1/1 0/41 0/38 2/22 0/66
5 HLSCNN 35/35 0/0 40/40 0/0 21/21 0/0
6 VTA 0/35 36/36 1/41 38/38 2/22 66/66

1. (a) manually specifying and (b) semi-automatically synthesizing an ILA model (Sub-

ramanyan et al., 2018).

2. refinement checking between an ILA specification and an RTL implementation.

3. automatic translation from semantics of ILA instructions to SMT formulas.

4. generating a sound executable simulator based on the operational semantics defined

by the ILA model.

We use 1(a), 3, and 4 in this work.

5 Case Studies and Evaluation

We show the generality of the 3LA methodology through multiple case studies.

5.1 Target Accelerators

We added support for three accelerators specialized for DL applications that provide hard-

ware operations at different levels of granularity:

123

5.1.1 FlexASR

FlexASR is an accelerator optimized for speech and natural language processing (NLP) tasks

that supports various recurrent neural networks (Tambe et al., 2021). It uses a custom nu-

meric datatype, AdaptivFloat, for boosting the accuracy of quantized computations (Tambe

et al., 2020).

Our compiler supports two of FlexASR’s operations: linear layers (illustrated in Fig-

ure 5.4) and LSTM layers. For simplicity, the pattern we match for the LSTM layer in exact

matching is precisely the formulation of an LSTM produced by TVM’s PyTorch importer,

which is “unrolled” to the correct number of timesteps (35 in the case of our LSTM-WLM

application). For flexible matching, we translate the “unrolled” LSTM in Relay into Glen-

side and also match it in the target Glenside program. In principle, it would be possible to

define a rewrite rule corresponding to a single LSTM timestep, and another rewrite to “fold”

adjacent timesteps into a single FlexASR LSTM layer invocation (one ILA instruction) with

the total number of timesteps.

5.1.2 HLSCNN

HLSCNN is an accelerator optimized for 2D convolutions (Whatmough et al., 2019). It is de-

signed to operate on 8/16-bit fixed point numbers, and the feature map tensors are expressed

in the NHWC layout format for providing better performance through parallelization.

Our HLSCNN specification has only one operation, a non-grouped 2D convolution. In

Relay and Glenside, we map any non-grouped 2D convolution (nn.conv2d) to the HLSCNN

convolution operation. Note that the Relay convolution operation allows for padding an input

before convolving it; our implementation pads on the host before invoking the accelerator.

In principle, it would be possible to rewrite a grouped convolution into a concatenation of

non-grouped convolutions, but the number of groups in the models example tended to be

large (960 groups in MobileNet), which would blow up the programs and be impractical to

run on a single device.

124

5.1.3 VTA

VTA is a parameterizable accelerator for tensor operations featuring a processor-like design

with an ISA and configurable parameters (Moreau et al., 2019). It provides efficient hard-

ware implementations of element-wise arithmetic operations as well as generalized matrix

multiplication (GEMM).

Unlike the above accelerators, VTA is a fine-grained programmable accelerator with a

defined ISA. Hence, “operators” in VTA are really sequences of VTA instructions that imple-

ment the semantics of a tensor operator in Relay. As discussed in Huang et al. (2018a), for

processor-like designs, the ILA can be based on the ISA. TVM has a built-in bespoke code

generator for VTA, which operates on TVM’s lower-level Halide-like DSL and directly imple-

ments arbitrary tensor operations for VTA. In principle, it would be possible for us to adapt

the existing VTA code generator to instead output VTA ILA instructions, resembling tradi-

tional instruction selection. For simplicity, our prototype implements matrix multiplication

and addition as fixed sequences of VTA ILA instructions.

5.1.4 Implementation Complexity

The ILAs for FlexASR, HLSCNN, and VTA are approximately 5600, 1600, and 2100 lines of

code, respectively—note that these ILAs serve the dual purposes of enabling compilation via

the 3LA methodology as well as validating the RTL design. Additionally, the BYOC-based

code generators and runtimes for these devices are approximately 450, 300, and 900 lines of

code, respectively. For comparison, the existing VTA compilation stack in TVM is about

5500 lines of code (though it supports many more features than our code generator).

5.2 Target Applications

For our experiments, we considered six DL applications corresponding to common neural

network models for language and vision tasks that contain operators supported by the three

target accelerators. We selected applications with reasonable size for human inspection and

125

in-depth analysis.

With the exception of the minor change for LSTM-WLM, all applications were mapped

to accelerators without any manual modifications.

5.2.1 EfficientNet

EfficientNet is a recent convolutional neural network (CNN) designed for image classification

that uniformly scales network width, depth, and resolution (Tan and Le, 2019). We chose it

because it contains convolutions that could be accelerated by VTA and HLSCNN. We used a

publicly available implementation of EfficientNet2 in MxNet, pretrained on ImageNet (image

size 224× 224, with 1000 classes). We imported it through TVM’s MxNet importer.

5.2.2 LSTM-WLM

LSTM-WLM is a simple text generation application (PyTorch, 2020) implemented using an

LSTM recurrent neural network architecture (Graves and Jaitly, 2014). We chose this model

because it contains an LSTM layer that could be accelerated by FlexASR.

We used the LSTMmodel implementation from the official PyTorch examples repository,3

training on WikiText-2 with the provided script on the following settings: 40 epochs, a batch

size of 20, sequence length of 35, and an initial learning rate of 20, with a single layer for

the LSTM. We imported it through TVM’s PyTorch importer with one simplification in the

importer: for simplicity, our FlexASR LSTM layer integration only returned the LSTM’s

sequence output but not the final hidden and cell states (even though the device itself

supports this). In order to match the semantics between our integration and the LSTM, we

modified the imported LSTM not to return the final hidden and cell states either. In future

work, it would be feasible for us to support returning the final hidden and cell states and

eliminate this simplification.

2https://github.com/mnikitin/EfficientNet, accessed Nov. 18, 2021.
3https://github.com/pytorch/examples/tree/master/word_language_model, accessed Nov. 18, 2021.

https://github.com/mnikitin/EfficientNet
https://github.com/pytorch/examples/tree/master/word_language_model

126

5.2.3 MobileNet V2

MobileNet V2 is a commonly used CNN, designed for mobile and embedded vision applica-

tions, that uses depth-wise separable convolutions (Howard et al., 2017; Sandler et al., 2019).

We chose MobileNet due to its wide use, especially on embedded devices.

We used an open-source implementation of MobileNetV24 in PyTorch and used the im-

plementation’s provided script to train on CIFAR-10, training for 200 epochs with a learning

rate of 0.01 and a batch size of 128. We imported it using TVM’s PyTorch importer.

5.2.4 ResMLP

ResMLP is a recent residual network, designed for image classification, comprised only of

multi-layer perceptrons and no convolutional layers (Touvron et al., 2021). We chose this

model because its preponderance of linear layers means it could be accelerated by VTA as

well as by FlexASR (despite not being a language model).

We used an open-source ResMLP implementation5 in PyTorch. We used similar parame-

ters as those reported in Touvron et al. (2021) for training on CIFAR: 384 features, 12 layers,

and a patch size of 16. We trained it on CIFAR-10 for 100 epochs with a learning rate of

0.01, though in Table 5.4, we note that we obtained a lower reference accuracy on CIFAR-10

than that reported in Touvron et al. (2021). We are not certain that we trained using all

the same settings as in the original work and (in order to reduce the load on the simulator)

we trained and evaluated on 32× 32 images, whereas the original work scaled the images up

to 256× 256. We imported the model through TVM’s PyTorch importer.

5.2.5 ResNet-20

ResNet-20 is a CNN designed for image classification that applies identity mapping (He et al.,

2016a). As with MobileNet, we chose ResNet for its common use in practice.

4https://github.com/kuangliu/pytorch-cifar, accessed Nov. 18, 2021.
5https://github.com/lucidrains/res-mlp-pytorch, accessed Nov. 18, 2021.

https://github.com/kuangliu/pytorch-cifar
https://github.com/lucidrains/res-mlp-pytorch

127

We used the Gluon Model Zoo’s implementation of ResNet-20 in MxNet,6 pretrained on

CIFAR-10. We imported it unmodified through TVM’s MxNet importer.

5.2.6 Transformer

Transformer is a language representation model comprised primarily of attention mecha-

nisms (Vaswani et al., 2017). We chose Transformer as a representative of recent NLP

models in common use.

We used the nn.Transformer implementation from PyTorch, with 8 heads, 6 encoder

layers, 6 decoder layers, and 256 features (left untrained). These settings were based on a

TVM PyTorch importer unit test.

5.3 Evaluation: Compilation

We examined the portability provided by 3LA through end-to-end compilation using our com-

piler prototype. We took the previously described six DL applications, developed by different

teams in different DSLs, and compiled them for the three target accelerators. Our compiler

prototype successfully generated code that exploits the accelerators for supported computa-

tions. Furthermore, we demonstrate full-system deployment, running 3LA-generated code

on physical hardware through FPGA emulation.

5.3.1 Portability and Flexible Matching

Table 5.1 shows the compilation statistics of using exact matching and flexible matching.

It describes the source language in which the application is programmed (Row 2) and the

program complexity using the number of Relay operators as a proxy (Row 3). It reports the

number of invocations to FlexASR, HLSCNN, and VTA when using exact/flexible matching

in Rows 4-6. Note that some invocations (IR-acclerator mappings) correspond to multiple

Relay operators; in particular, the 35-step FlexASR LSTM in LSTM-WLM is 566 operators

6https://cv.gluon.ai/api/model_zoo.html#gluoncv.model_zoo.cifar_resnet20_v1, accessed Nov.
18, 2021.

https://cv.gluon.ai/api/model_zoo.html#gluoncv.model_zoo.cifar_resnet20_v1

128

and maps to one FlexASR LSTM instruction (a dramatic granularity mismatch between

DSL and accelerator operations).

Our results demonstrate portability with the successful exploitation of accelerators for

supported operations and provide evidence for the utility of flexible matching. For example,

flexible matching revealed several offloads to FlexASR’s linear layer in MobileNet V2 by

rewriting nn.dense to nn.dense followed by an add of a zero tensor. Also note that certain

Glenside rewrites that implement the im2col optimization (Chellapilla et al., 2006) result in

many more offloads to VTA in that table; this is due to 2D convolutions being rewritten into

matrix multiplications. Hence, flexible matching allowed us to support 2D convolutions on

VTA even though our prototype code generator did not explicitly implement 2D convolutions

via VTA instructions. This is an example of emergent effects resulting from simple, reusable

rewrite rules.

5.3.2 System Deployment and FPGA Emulation

To demonstrate the 3LA methodology on a real hardware platform, we synthesized, placed-

and-routed the FlexASR accelerator on a Xilinx Zynq ZCU102 FPGA, which consumed 86%

of the available LUT resources.7 We utilized the Xilinx SDK (XilinxSDK, nd) to pass the

accelerator instructions (MMIO commands) to the accelerator interface for invoking the sup-

ported operations. Specifically, we compiled and executed synthetic application programs in

which LSTM layers and linear layers are offloaded to the FlexASR accelerator. This case

study demonstrates the applicability of 3LA in actual system deployment on a commodity

hardware platform. Further, it shows that in the absence of compilation-results validation

enabled by the 3LA methodology, the need for a fully functional RTL model and the signif-

icant engineering overhead indeed limit early-stage software/hardware co-design.

7Due to the significant engineering overhead of FPGA emulation, FlexASR is the only accelerator we
deployed on an FPGA.

129

Table 5.2: Simulation-based validation results of checking IR-accelerator mappings
(partial). The average relative error (Avg. Err.) and its standard deviation (Std. Dev.)
are measured over 100 simulated test inputs.

Accelerator Operation Avg. Err. Std. Dev.
1 VTA GEMM 0.00% 0.00%
2 HLSCNN Conv2D 1.78% 0.16%
3 FlexASR LinearLayer 0.84% 0.29%
4 FlexASR LSTM 1.21% 0.19%
5 FlexASR LayerNorm 0.27% 0.20%
6 FlexASR MaxPool 0.00% 0.0%
7 FlexASR MeanPool 1.79% 0.28%
8 FlexASR Attention 4.22% 0.09%

5.4 Evaluation: Compilation-Results Validation

An important criterion of correct compilation is that the compiled program, in which parts

of the computation are offloaded to accelerators, must retain the same functionality as in-

tended with the IR semantics. Thus, we use the IR ILA specification as the reference for

formal verification of the IR-accelerator mappings, and use an IR interpreter as the reference

when running simulation at two levels: the operation level (for checking the IR-accelerator

mappings) and the application level.

5.4.1 Checking IR-Accelerator Mappings

Modern accelerators often adopt custom numerics for achieving better power-performance

efficiency. For example, in our cases, FlexASR and HLSCNN use the AdaptivFloat and 8/16-

bit fixed point data types, respectively. This means checking the IR-accelerator mappings

must account for the numerical differences. To separate the effect of numerics and focus on

the definition of operations, we use abstract data types to formally verify the equivalence

(demonstrated through a proof-of-concept case study). In addition, to precisely capture the

numerical differences, we use simulation to compare accelerator executions (using an ILA

130

simulator) against the IR semantics (using an IR interpreter).

Simulation-Based Validation For checking the mappings through simulation, we gen-

erated 100 random test inputs and compared the outputs of the accelerator ILA simulator

and that of an IR interpreter. The accelerator ILA simulators precisely model the data

types used by the accelerators. Specifically, VTA, HLSCNN, and FlexASR use 8-bit integer,

8/16-bit fixed point, and AdaptiveFloat, respectively. For the IR interpreter, as a reference,

we use 8-bit integers for VTA and 32-bit floating point for HLSCNN and FlexASR. These

are respectively the closest standard datatypes to those used by these accelerators. The

relative errors are measured using the standard Frobenius norm (Anderson et al., 1999) for

the tensors: Error = ‖Outref −Outacc‖F / ‖Outref‖F .

Table 5.2 shows a selected subset of the validation results: four IR-accelerator mappings

(Rows 1-4) that are used in the end-to-end compilation (Table 5.1) and four additional map-

pings for non-trivial operations (Rows 5-8). We omit validation results of other mappings,

e.g., for trivial operations like add and max. Columns 1 and 2 indicate the accelerator and

the supported operation for each IR-accelerator mapping, respectively. Columns 3 and 4

provide the average relative error and the standard deviation, respectively, over the 100 test

inputs. For mappings that are not affected by numerical differences, e.g., the VTA-supported

GEMM, we see exact matches in the results. For other mappings, we see deviations caused

by the custom numerics, especially for complex operations such as the attention operation

for FlexASR.

Proof-Based Formal Verification The key challenges in formally verifying mappings

between fragments that represent DL computations include handling nested loops that iterate

through tensor elements (in both the compiler IR and accelerator specification) and relating

tensor variables between the two sides which may employ various tiling mechanisms. As a

proof of concept, we considered the Relay and FlexASR fragments for the FlexASR MaxPool

IR-accelerator mapping. These fragments both have three or more nested loops, and the

131

relation between the two fragments must account for a special customized tiling provided by

FlexASR (Tambe et al., 2021). For this study, we considered equivalence of the fragments

over fixed-sized tensors with symbolic data8 and implemented verification using two methods,

bounded model checking (BMC) (Biere et al., 2003) and by employing a solver for constrained

Horn clauses (CHCs) (Komuravelli et al., 2016).

The BMC-based method unrolls all the loops in both fragments, which is straightforward

but may fail to scale for large-sized tensors. The CHC-based method is given a product

program of the two fragments and uses relational loop invariants, i.e., formulas that relate

the two fragments at intermediate loop boundaries. This avoids loop unrolling and can

handle large tensors. Our implementation uses Z3 (de Moura and Bjørner, 2008) as the

underlying SMT solver in both approaches.

While ILAng directly supports BMC, we manually created CHCs for the CHC-based

method. We also supplied the relational invariants that capture the customized tiling of

FlexASR. In future work, we plan to automate CHC generation, which will allow formal

verification of other IR-accelerator mappings used in this paper. Table 5.3 shows the results

for this case study for various dimensions of the 2D input matrix (Column 1), with runtimes of

the BMC-based and CHC-based verification methods in Columns 2 and 3, respectively. The

BMC-based method was able to verify equivalence of mappings with small-sized matrices,

but timed out (with a 3-hour time limit) on the 16×64 matrix that was used for simulation-

based validation. In contrast, the CHC-based method was faster than BMC and successfully

verified mappings with larger matrices. These results are encouraging and demonstrate how

the 3LA methodology enables formal verification of key steps in the compilation flow.

5.4.2 Application-Level Co-Simulation

With the validated IR-accelerator mappings, we want to check if minor deviations at the op-

eration level will influence application-level behavior. Therefore, we performed application-

8Formally modeling custom numerics at the bit level is left to future work.

132

Table 5.3: Formal verification case study: results for verifying the IR-accelerator
mapping for FlexASR MaxPool. Experiments were run on an Intel Core i7-5500U CPU
(two 2.40GHz cores) with 8 GB RAM.

Matrix dim. BMC verif. time (s) CHC verif. time (s)
2× 16 443 38
4× 16 1976 37
4× 32 7954 146
8× 64 Timeout (>3 hrs) 1831
16× 64 Timeout (>3 hrs) 5177

Table 5.4: Application-Level Co-Simulation Results. In each validation, we evaluated
2000 images (for vision tasks) or 100 sentences (for text generation) that were evenly sampled
from the corresponding dataset. Results for the vision models ResMLP, ResNet-20, and
MobileNet V2 are given in terms of classification accuracy, while results for LSTM-WLM
(a text generation model) are given in terms of perplexity. The original result is measured
using original accelerator designs. The updated result is measured using modified designs
provided by the accelerator developers.

Application Processing Platform Reference Res.∗ Original Res. Updated Res. Time†

LSTM-WLM FlexASR 122.15 (perp.) 257.39 (perp.) Reported 1m10s
ResMLP FlexASR 69.65% (acc.) 10.65% (acc.) Reported 19m15s
ResNet-20 FlexASR & HLSCNN 91.55% (acc.) 29.15% (acc.) 91.85% (acc.) 14m23s
MobileNet V2 FlexASR & HLSCNN 92.40% (acc.) 10.35% (acc.) 91.20% (acc.) 42m26s

∗ The reference result does not represent the best achievable accuracy/perplexity of the model on the
given dataset. This table is intended for comparing the application-level results on different processing
platforms.
† Average simulation time of running one data point (e.g., an image or a sentence) on a 2.4GHz AMD
EPYC 7532 core.

133

level co-simulation on several applications which offload various computations to FlexASR

and HLSCNN, the two accelerators that utilize custom numerics. Specifically, we exam-

ined LSTM-WLM and ResMLP, which offload to FlexASR the LSTM layer and linear layer

operations, respectively. We also considered MobileNet and ResNet, which both offload

2D convolution and linear layer operations to HLSCNN and FlexASR, respectively. (We

compiled to two target accelerators by including the IR-accelerator rewrite rules for both

accelerators.)

We trained and validated the LSTM-WLM model using the WikiText-2 dataset (Merity

et al., 2016). The image classification models (MobileNet V2, ResMLP, and ResNet-20)

were trained and validated using the CIFAR-10 dataset (CIFAR, 2009). Table 5.4 shows

the application-level co-simulation results. Columns 1 and 2 describe the application and

the target processing platform under evaluation, respectively. We provide a reference result

(perplexity for the text-generation task and inference accuracy for vision tasks) in Column 3

by running the application on the host processor, i.e., not offloading to accelerators. The

validation result using original accelerator designs, labeled “Original Result,” is provided in

Column 4. For cases where the original result was significantly poorer than the reference

result, we reported it to the accelerator developers for their further investigation. When they

provided an accelerator design modification to address this, we provide an updated result,

using this modified accelerator, in Column 5. The average simulation time is reported in

Column 6.

Case Study: ResNet-20 and MobileNet V2 We reported the original validation results

of ResNet-20, which were far from the 91.55% reference result, to the accelerator developers.

We also provided statistics for each accelerator invocation (e.g., error accumulation, input

and output ranges, etc.), gathered by our compiler prototype and ILA simulators. With

the information, the accelerator developers were able to identify the root cause: weight data

values in HLSCNN’s 2D convolutional layers were heavily quantized by its 8-bit fixed point

data type due to a narrower value range. After updating the design by expanding the original

134

8-bit representation to 16 bits, the application-level result matched up to the reference result.

The same tuning approach also resulted in improved accuracy for MobileNet V2.

The results in Table 5.4 reaffirm the need for application-level validation, especially for

accelerators utilizing custom numerics. However, without a portable end-to-end compilation

flow, such application-level validation is prohibitively difficult for new accelerators. Through

our case studies, we demonstrate how 3LA provides systematic and automatic compilation-

results validation at the application level and also show its usefulness in software/hardware

co-design. Specifically, with the ILA, 3LA provides quick design space exploration and nu-

merics tuning without hardware engineering overhead (e.g., deploying to FPGA) in each

hardware design iteration. Further, it provides handy debugging information and efficient

simulation. (For FlexASR, we see a 30× speedup on average with the ILA simulator com-

pared to RTL simulation using a commercial Verilog simulator.)

6 Discussion and Future Work

The 3LA methodology establishes a foundation for an end-to-end, extensible compilation

flow for utilizing accelerators. Our prototype not only provides a working implementation,

but also an experimental framework for future research in this area. Thus far, we have

demonstrated how flexible matching, mapping validation, and application-level co-simulation

are enabled by 3LA.

Below we discuss two example near-term extensions ripe for further exploration and

inclusion in 3LA-based frameworks.

6.1 Optimizing Data Transfers

As a motivating example, we consider an image processing application with a 2D maxpooling

layer that we would like to offload to FlexASR. Suppose that the maxpooling layer uses a

window with shape (4, 4) and stride (2, 2) and is used to downsample a 128×128 matrix into

a 64 × 64 matrix. However, FlexASR does not directly support this window or stride size.

Instead, it supports a related operation called temporal maxpooling, which corresponds to 2D

135

; (a) IR-accelerator rewrite rule for FlexASR ’s temporal maxpooling
; (which corresponds to 2D maxpooling with window shape and stride (2, 1))
(map reduceMax (windows (2, 1) (2, 1) ?T)) -> (fasrMaxpLoad (fasrMaxpool (

fasrMaxpStore ?T)))

; (b) Initial Glenside code for a 2D maxpool with window shape (4, 4)
; and stride (2, 2). We use T to denote the input of the 2D maxpooling layer.
(map reduceMax (windows (4, 4) (2, 2) T))

; (c) A rewritten IR program found via Glenside
; T denotes the input of the 2D maxpooling layer ,
; and S is the shape of the output of the 2D maxpooling layer
(reshape (map reduceMax (windows (2, 1) (2, 1)
(map reduceMax (windows (2, 1) (2, 1)
(map reduceMax (windows (2, 1) (2, 1)
(map reduceMax (windows (2, 1) (2, 1)
(map flatten (windows (4, 4) (2, 2) T)))))))))) S)

; (d) 2D maxpooling using FlexASR
(reshape (fasrMaxpLoad (fasrMaxpool (fasrMaxpStore
(fasrMaxpLoad (fasrMaxpool (fasrMaxpStore
(fasrMaxpLoad (fasrMaxpool (fasrMaxpStore
(fasrMaxpLoad (fasrMaxpool (fasrMaxpStore
(map flatten (windows (4, 4) (2, 2) T)))))))))))))) S)

; (e) IR-accelerator rewrite rule to remove redundant Store-Loads
(fasrMaxpStore (fasrMaxpLoad ?T) -> ?T

; (f) Optimized 2D maxpooling using FlexASR
(reshape (fasrMaxpLoad (fasrMaxpool (fasrMaxpool (fasrMaxpool (fasrMaxpool (

fasrMaxpStore
(map flatten (windows (4, 4) (2, 2) T)))))))) S)

Figure 5.8: An illustration of how 3LA offloads 2D maxpooling to FlexASR’s temporal maxpooling op-
eration. Note that (b) does not contain a match for the left-hand side of the IR-accelerator rewrite rule in
(a). (c) is an equivalent rewritten IR program found by flexible matching, containing four instances of the
left-hand side of the IR-accelerator rewrite rule. The result of the replacements is given in (d). Note that
in this program, the initial store and the final load are needed to communicate with FlexASR; however, the
intermediate loads/stores can be eliminated, since the output of one instance serves as input of another.
(e) gives a rewrite rule for removing intermediate loads/stores and (f) shows the result of applying it. This
program only performs a single (matrix) store at the start of the operation and a single (matrix) load to
read the output at the end of the operation. In the future, we hope to generalize this example and consider
memory organization in accelerators and data-movement for optimizing data transfers.

136

maxpool with a fixed window of shape (2, 1) and stride (2, 1). The following IR-accelerator

rewrite rule represents an offloading of the temporal maxpooling operation, where the IR

fragment is shown on the left of the arrow and the FlexASR fragment, on the right (?T in

the pattern denotes the input matrix; fragments are shown as S-expressions).

(map reduceMax (windows (2, 1) (2, 1) ?T)) =⇒

(fasrMaxpLoad (fasrMaxpool (fasrMaxpStore ?T)))

By using flexible matching, our prototype found the following rewritten IR program for the

2D maxpooling layer, with a (4, 4) window of shape and a stride of 2 on both axes and where

T denotes the input to the layer and S is the shape of the layer’s output:

(reshape (map reduceMax (windows (2, 1) (2, 1)

(map reduceMax (windows (2, 1) (2, 1)

(map reduceMax (windows (2, 1) (2, 1)

(map reduceMax (windows (2, 1) (2, 1)

(map flatten (windows (4, 4) (2, 2) T))

)))))))) S)

Then the IR-accelerator rules above rewrite each of these four map reduceMax instances to

the FlexASR fragment. The listings for this example are in Figure 5.8, with the result of

applying the IR-accelerator mapping in part (d).

Note that each of the map reduceMax instances in the rewritten IR program is mapped to

a composition of three FlexASR instructions (as shown in the IR-accelerator mapping rewrite

rule), where fasrMaxpStore stores the input data into FlexASR, fasrMaxPool performs the

maxpool computation in FlexASR, and fasrMaxpLoad loads the output result from FlexASR.

When four of these instances are composed, the initial store and the final load are needed

to communicate with FlexASR; however, the other intermediate transfers can be eliminated,

since the output of one instance serves as input of another. We plan to enhance our prototype

to cancel such redundant transfers, with the final optimized result shown in part (f) of

Figure 5.8.

This example illustrates the importance of minimizing data transfers while offloading

137

operations to accelerators. Note that a fixed set of accelerator APIs may not allow such op-

timizations, whereas 3LA provides this flexibility through individual accelerator instructions.

In future work, we would like to consider more general optimizations on the accelerator side

that account for memory organization and data movement, potentially leveraging standard

register allocation as well as recent DL operator fusion techniques (Niu et al., 2021).

6.2 Extending Formal Verification of Mappings

In Section 5.4.1, we explored CHC-based verification of IR-accelerator mappings for fixed-

size tensors (with symbolic data) and supplied relational loop invariants to the verifier. In

future work, we would like to add support for symbolic-sized tensors and automatic inference

of relational loop invariants. Additionally, our simulation validation reveals that custom

numerics can significantly impact model accuracy. We would like to extend our verification

to account for custom numerics and check or derive error bounds.

7 Summary

The 3LA methodology addresses key challenges presently complicating effective accelerator

utilization under the prevalent API-based approach. Specifically, we highlight the lack of

portability, the inability to integrate accelerators into existing optimizing compilers, and the

difficulty in validating generated code. The 3LA methodology alleviates these issues by in-

troducing a formal software/hardware interface for accelerators, using the recently developed

ILA representation to fulfill this purpose. Using term rewriting to implement flexible match-

ing allows for easily, extensibly, and verifiably exposing opportunities to apply accelerator

operations, in a process resembling traditional instruction selection. The 3LA prototype

serves as a proof of concept of such a compilation flow, indeed incorporated into an exist-

ing DL compiler stack and able to simulate entire DL models end to end (exposing, in the

process, potential issues with the numerical representations used by the devices). While the

prototype lacks some of the capabilities of propertietary tools developed by accelerator man-

ufacturers, it demonstrates that adding accelerator support to an existing compiler stack is

138

no longer the exclusive province of large enterprises that can afford entire teams of hardware

and compilers experts.

139

Chapter 6

CONCLUSION

The main contributions of this dissertation, DTR and the 3LA methodology, apply tech-

niques from the broader programming languages literature in order to satisfy the needs of

DL applications. These contributions were in turn motivated by the earlier work on the Re-

lay language, to which I contributed, which allowed for expressing DL models as programs

in a general functional programming language with support for automatic differentiation,

ultimately achieving performance superior to other DL frameworks while generalizing many

past DL optimizations into compiler optimizations. In DTR, we approach the technique

of checkpointing as a dynamic analysis by taking an approach inspired by software caching

and register rematerialization, ultimately developing a checkpointing algorithm that not only

attains near-optimal performance on static models but also generalizes to DL models with

arbitrary dynamic control flow. The 3LA methodology presents a technique for integrating

support for new accelerators into an existing compiler stack, culminating in a prototype

that extends the TVM compiler stack for DL with support for greatly varying accelerators,

applying equality saturation in order to apply more automation. These systems approach

distinct problems in the DL domain by taking more abstract views of DL models, namely as

general programs which might use the features provided by typical programming languages,

ultimately adapting general compilers techniques to this particular domain without imposing

assumptions of a more restricted computing model.

While the systems presented in the dissertation achieve tangible results with applicabil-

ity to deep learning, there are many possibilities for further work along these lines. DTR

only considers a limited set of metadata for formulating its heuristics and relies on manu-

ally specified heuristics. We may consider taking further metadata into account, as in the

140

MegEngine DL framework (MegEngine, 2021), which includes an implementation of DTR

whose heuristic takes memory fragmentation into account and prioritizes evictions that re-

duce fragmentation, allowing for better utilization of GPU memory. Another possibility for

DTR would be to investigate whether heuristics could be learned from multiple training runs

rather than manually specifying them, which may provide more confidence that the heuris-

tics chosen are optimal for the specific applications chosen. As discussed in Chapter 2, works

such as that of Tang et al. (2022) also raise the possibility of combining DTR’s dynamic

evictions with swapping, suggesting that the runtime might choose when to free a tensor

from memory or when simply to send it to CPU or another device, providing more flexibility

though posing challenges in ensuring optimal performance.

The 3LA methodology presents even more possibilities, as the prototype discussed is only

a proof of concept meant to demonstrate an end-to-end compilation pipeline but without any

guarantees of performance. Applying the methodology to write a production-ready compiler

that could achieve performance comparable to present-day custom accelerator integrations

would likely require the addition of numerous new layers that provide information about

timings and other hardware performance characteristics, suggesting the need to add fur-

ther intermediate layers between the pattern-matching phase in the high-level DSL and the

generation of ILA instructions. The same will likely also be necessary to properly generate

performant code for accelerators that have expressive instruction sets, like VTA. One im-

plication of more sophisticated performance modeling in 3LA would also be that the cost

function for flexible matching would have to be sufficiently sophisticated to correspond to

true likely performance, which is likely to be a challenging future problem given the dif-

ficulty of accurately modeling hardware performance. Additionally, the aspects of formal

verification explored in the 3LA prototype do not amount to true end-to-end verification of

the compiler stack, as in CompCert (Leroy, 2006)—besides verifying more accelerator opera-

tions and their correspondence to language constructs, many more intermediate steps would

have to be formally specified and verified, including the individual rewrite rules as well as

the correctness of the flexible matching step (recent progress on proof artifacts in egg should

141

be of assistance).

Beyond the future possibilities of the specific systems detailed in this dissertation, I would

like to emphasize the broader trend that they and related systems signify. DTR, 3LA, and

my broader work on Relay have addressed with all levels of the DL system stack: the repre-

sentation and expression of programs and reasoning about them, system-level optimizations,

and hardware-level optimizations. The contributions I have detailed in this dissertation

form a small part of the vast infrastructure that is continually being developed to support

emerging DL applications, not only the models in use today but supporting more expressive

features in the hope that future models will make use of them. The need for such systems

highlights the present importance, economies of scale, and constantly shifting frontiers of

the DL domain: New, greatly varying applications are being developed and new hardware is

being developed at an astonishing pace in order to support those applications, all the while

motivating the development of systems-level optimizations in order to ensure the best use of

computing resources for DL applications.

The systems discussed in this dissertation metonymize a new compiler stack that has

emerged to support DL applications, or indeed “differentiable programming” writ large—

what is essential to note is that this new compiler infrastructure resembles in great deal

traditional compilers used to support general-purpose languages on general-purpose pro-

grammable devices. It is my hope that these systems will find use not only for DL ap-

plications but may serve as a guide for adapting well-studied principles from the compilers

literature to future domains and future problems that may demand similarly great allocation

of computing resources.

142

BIBLIOGRAPHY

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul

Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI 16). 265–283. https:

//www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz,

S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. 1999. LAPACK Users’

Guide (Third Ed.). Society for Industrial and Applied Mathematics, USA.

Jason Ansel. 2022. TorchDynamo. https://github.com/facebookresearch/torchdynamo

Accessed Apr. 5, 2022.

Franz Baader and Tobias Nipkow. 1998. Term Rewriting and All That. Cambridge University

Press, USA.

Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly, Caleb Donovick, David

Durst, Kayvon Fatahalian, Kathleen Feng, Pat Hanrahan, Teguh Hofstee, Mark Horowitz,

Dillon Huff, Fredrik Kjolstad, Taeyoung Kong, Qiaoyi Liu, Makai Mann, Jackson Melchert,

Ankita Nayak, Aina Niemetz, Gedeon Nyengele, Priyanka Raina, Stephen Richardson,

Raj Setaluri, Jeff Setter, Kavya Sreedhar, Maxwell Strange, James Thomas, Christopher

Torng, Leonard Truong, Nestan Tsiskaridze, and Keyi Zhang. 2020. Creating an Agile

Hardware Design Flow. In Proceedings of the 57th ACM/EDAC/IEEE Design Automation

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://github.com/facebookresearch/torchdynamo

143

Conference (DAC ’20). IEEE Press, New York, NY, USA, Article 142, 6 pages. https:

//doi.org/10.1109/DAC18072.2020.9218553

Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole Superoptimizers.

In Proceedings of the 12th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS XII). Association for Computing

Machinery, New York, NY, USA, 394–403. https://doi.org/10.1145/1168857.1168906

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark

Siskind. 2015. Automatic differentiation in machine learning: a survey. CoRR

abs/1502.05767 (2015). arXiv:1502.05767 http://arxiv.org/abs/1502.05767

Olivier Beaumont, Julien Herrmann, Guillaume Pallez, and Alena Shilova. 2019. Optimal

Memory-aware Backpropagation of Deep Join Networks. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences 378 (01 2019).

https://doi.org/10.1098/rsta.2019.0049

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.

2003. Bounded model checking. Adv. Comput. 58 (2003), 117–148. https://doi.org/

10.1016/S0065-2458(03)58003-2

John Binder, Kevin Murphy, and Stuart Russell. 1997. Space-Efficient Inference in Dynamic

Probabilistic Networks. In Proceedings of the Fifteenth International Joint Conference

on Artifical Intelligence - Volume 2 (IJCAI’97). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1292–1296.

Gabriel Hjort Blindell. 2016. Instruction Selection - Principles, Methods, and Applications.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-319-34019-7

Preston Briggs, Keith D. Cooper, and Linda Torczon. 1992. Rematerialization. In Pro-

ceedings of the ACM SIGPLAN 1992 Conference on Programming Language Design and

https://doi.org/10.1109/DAC18072.2020.9218553
https://doi.org/10.1109/DAC18072.2020.9218553
https://doi.org/10.1145/1168857.1168906
http://arxiv.org/abs/1502.05767
https://doi.org/10.1098/rsta.2019.0049
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1007/978-3-319-34019-7

144

Implementation (PLDI ’92). Association for Computing Machinery, New York, NY, USA,

311–321. https://doi.org/10.1145/143095.143143

Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large Scale GAN Training for

High Fidelity Natural Image Synthesis. arXiv:cs.LG/1809.11096

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,

SamMcCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models

are Few-Shot Learners. arXiv:cs.CL/2005.14165

Jerry R. Burch and David L. Dill. 1994. Automatic Verification of Pipelined Microprocessor

Control. In Proceedings of the 6th International Conference on Computer Aided Verifi-

cation (CAV ’94). Springer-Verlag, Berlin, Heidelberg, 68–80. https://dl.acm.org/

citation.cfm?id=735662

Murray S. Campbell and A. Joseph Hoane. 1999. Search control methods in Deep Blue. In

In AAAI Spring Symposium on Search Techniques for Problem Solving Under Uncertainty

and Incomplete Information. AAAI Press, pages.

Ningyuan Cao, Baibhab Chatterjee, Minxiang Gong, Muya Chang, Shreyas Sen, and Ar-

ijit Raychowdhury. 2020. A 65nm Image Processing SoC Supporting Multiple DNN

Models and Real-Time Computation-Communication Trade-Off Via Actor-Critical Neuro-

Controller. In Proceedings of the 2020 IEEE Symposium on VLSI Circuits. IEEE, New

York, NY, USA, 1–2. https://doi.org/10.1109/VLSICircuits18222.2020.9162878

Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael

Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd

https://doi.org/10.1145/143095.143143
https://dl.acm.org/citation.cfm?id=735662
https://dl.acm.org/citation.cfm?id=735662
https://doi.org/10.1109/VLSICircuits18222.2020.9162878

145

Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek

Chiou, and Doug Burger. 2016. A Cloud-Scale Acceleration Architecture. In Proceedings

of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-

49). IEEE Press, New York, NY, USA, Article 7, 13 pages. https://doi.org/10.1109/

MICRO.2016.7783710

Wei-Ting Jonas Chan, Andrew B. Kahng, Siddhartha Nath, and Ichiro Yamamoto. 2014.

The ITRS MPU and SOC system drivers: Calibration and implications for design-based

equivalent scaling in the roadmap. In Proceedings of the 32nd IEEE International Con-

ference on Computer Design (ICCD ’14). IEEE Computer Society, New York, NY, USA,

153–160. https://doi.org/10.1109/ICCD.2014.6974675

Kartik Chandra and Rastislav Bodik. 2017. Bonsai: Synthesis-Based Reasoning for Type

Systems. CoRR abs/1708.00551 (2017). arXiv:1708.00551 http://arxiv.org/abs/1708.

00551

Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High Performance Convolutional

Neural Networks for Document Processing. In Proceedings of the Tenth International

Workshop on Frontiers in Handwriting Recognition, Guy Lorette (Ed.). Université de

Rennes 1, La Baule (France), 6. https://hal.inria.fr/inria-00112631

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Yan, Leyuan Wang, Yuwei

Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018a. TVM: End-to-End

Compilation Stack for Deep Learning. In SysML 2018. https://arxiv.org/abs/1802.

04799

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,

Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Kr-

ishnamurthy. 2018b. TVM: An Automated End-to-End Optimizing Compiler for Deep

Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation

https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/ICCD.2014.6974675
http://arxiv.org/abs/1708.00551
http://arxiv.org/abs/1708.00551
https://hal.inria.fr/inria-00112631
https://arxiv.org/abs/1802.04799
https://arxiv.org/abs/1802.04799

146

(OSDI 18). USENIX Association, Carlsbad, CA, 578–594. https://www.usenix.org/

conference/osdi18/presentation/chen

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep Nets

with Sublinear Memory Cost. CoRR abs/1604.06174 (2016). arXiv:1604.06174 http:

//arxiv.org/abs/1604.06174

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos

Guestrin, and Arvind Krishnamurthy. 2018c. Learning to Optimize Tensor Programs.

In Proceedings of the 32nd International Conference on Neural Information Processing

Systems (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 3393–3404.

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss: An Energy-

Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE

J. Solid State Circuits 52, 1 (2017), 127–138. https://doi.org/10.1109/JSSC.2016.

2616357

Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott

Delaye, Vin Sharma, and Yida Wang. 2021. Bring Your Own Codegen to Deep Learning

Compiler. arXiv:cs.LG/2105.03215

CIFAR 2009. The CIFAR-10 dataset. Retrieved Nov. 15, 2021 from http://www.cs.

toronto.edu/~kriz/cifar.html

Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C

Programs. In Proceedings of the 10th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS 2004) (Lecture Notes in Computer Sci-

ence), Kurt Jensen and Andreas Podelski (Eds.), Vol. 2988. Springer, Berlin, Heidelberg,

168–176. https://doi.org/10.1007/978-3-540-24730-2_15

Torch Contributors. 2019. Broadcasting Semantics. https://pytorch.org/docs/stable/

notes/broadcasting.html

https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1007/978-3-540-24730-2_15
https://pytorch.org/docs/stable/notes/broadcasting.html
https://pytorch.org/docs/stable/notes/broadcasting.html

147

TVM Contributors. 2020. Pattern Matching in Relay. https://tvm.apache.org/docs/

langref/relay_pattern.html. Accessed Apr. 9, 2021.

B. Dauvergne and L. Hascoët. 2006. The Data-Flow Equations of Checkpointing in reverse

Automatic Differentiation. In International Conference on Computational Science, ICCS

2006, Reading, UK.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In

Proceedings of the 14th International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS 2008) (Lecture Notes in Computer Science),

C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963. Springer, Berlin, Heidelberg,

337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Nachum Dershowitz. 1993. A Taste of Rewrite Systems. In Functional Programming,

Concurrency, Simulation and Automated Reasoning (Lecture Notes in Computer Sci-

ence), Peter E. Lauer (Ed.), Vol. 693. Springer, Berlin, Heidelberg, 199–228. https:

//doi.org/10.1007/3-540-56883-2_11

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv:cs.CL/1810.04805

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Typechecker Us-

ing CLP (T). In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE. https://doi.org/10.1109/ase.2015.65

Michael D. Ernst. 2003. Static and dynamic analysis: Synergy and duality. In WODA 2003:

Workshop on Dynamic Analysis. Portland, OR, USA, 24–27.

Zhenman Fang, Farnoosh Javadi, Jason Cong, and Glenn Reinman. 2019. Understanding

Performance Gains of Accelerator-Rich Architectures. In Proceedings of the 30th IEEE

International Conference on Application-specific Systems, Architectures and Processors

https://tvm.apache.org/docs/langref/relay_pattern.html
https://tvm.apache.org/docs/langref/relay_pattern.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-56883-2_11
https://doi.org/10.1007/3-540-56883-2_11
https://doi.org/10.1109/ase.2015.65

148

(ASAP ’19). IEEE, New York, NY, USA, 239–246. https://doi.org/10.1109/ASAP.

2019.00013

Burke Fetscher, Koen Claessen, Michał Pałka, John Hughes, and Robert Bruce Findler.

2015. Making Random Judgments: Automatically Generating Well-Typed Terms from

the Definition of a Type-System. In Programming Languages and Systems, Jan Vitek

(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 383–405.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-Learning for

Fast Adaptation of Deep Networks. In Proceedings of the 34th International Conference

on Machine Learning (Proceedings of Machine Learning Research), Doina Precup and

Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention Centre, Sydney, Australia,

1126–1135. http://proceedings.mlr.press/v70/finn17a.html

Michael Flanders, Steven Lyubomirsky, and Edward Misback. 2021. Constraint-Based

Fuzzing for Deep Learning Applications. (2021). Unpublished class assignment (CSE

503 taught by René Just).

Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel

Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi, Stephen Heil, Pre-

rak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven K. Reinhardt,

Adrian M. Caulfield, Eric S. Chung, and Doug Burger. 2018. A Configurable Cloud-Scale

DNN Processor for Real-Time AI. In Proceedings of the 45th Annual International Sym-

posium on Computer Architecture (ISCA ’18). IEEE Press, New York, NY, USA, 1–14.

https://doi.org/10.1109/ISCA.2018.00012

Taro Fujii, Takao Toi, Teruhito Tanaka, Katsumi Togawa, Toshiro Kitaoka, Kengo Nishino,

Noritsugu Nakamura, Hiroki Nakahara, and Masato Motomura. 2018. New Generation

Dynamically Reconfigurable Processor Technology for Accelerating Embedded AI Appli-

cations. In Proceedings of the 2018 IEEE Symposium on VLSI Circuits. IEEE, New York,

NY, USA, 41–42. https://doi.org/10.1109/VLSIC.2018.8502438

https://doi.org/10.1109/ASAP.2019.00013
https://doi.org/10.1109/ASAP.2019.00013
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/VLSIC.2018.8502438

149

Angelo Garofalo, Gianmarco Ottavi, Alfio Di Mauro, Francesco Conti, Giuseppe Tagliavini,

Luca Benini, and Davide Rossi. 2021. A 1.15 TOPS/W, 16-Cores Parallel Ultra-Low Power

Cluster with 2b-to-32b Fully Flexible Bit-Precision and Vector Lockstep Execution Mode.

In Proceedings of the 47th European Solid State Circuits Conference (ESSCIR 2021). IEEE,

New York, NY, USA, 267–270. https://doi.org/10.1109/ESSCIRC53450.2021.9567767

Massimo Giordano, Kartik Prabhu, Kalhan Koul, Robert Radway, Albert Gural, Rohan

Doshi, Zainab F. Khan, JohnW. Kustin, Timothy Liu, Gregorio B. Lopes, Victor Turbiner,

Win-San Khwa, Yu-Der Chih, Meng-Fan Chang, Guénolé Lallement, Boris Murmann,

Subhasish Mitra, and Priyanka Raina. 2021. CHIMERA: A 0.92 TOPS, 2.2 TOPS/W

Edge AI Accelerator with 2 MByte On-Chip Foundry Resistive RAM for Efficient Training

and Inference. In Proceedings of the 2021 Symposium on VLSI Circuits. IEEE, New York,

NY, USA, 1–2. https://doi.org/10.23919/VLSICircuits52068.2021.9492347

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated

Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’05). Association for Computing Machinery,

New York, NY, USA, 213–223. https://doi.org/10.1145/1065010.1065036

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. 2017. The Reversible

Residual Network: Backpropagation Without Storing Activations. In Advances in Neural

Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 2214–2224.

Alex Graves and Navdeep Jaitly. 2014. Towards End-To-End Speech Recognition with Re-

current Neural Networks. In Proceedings of the 31st International Conference on Machine

Learning (Proceedings of Machine Learning Research), Eric P. Xing and Tony Jebara

(Eds.), Vol. 32. PMLR, Bejing, China, 1764–1772. https://proceedings.mlr.press/

v32/graves14.html

Andreas Griewank. 1994. Achieving Logarithmic Growth Of Temporal And Spatial Com-

https://doi.org/10.1109/ESSCIRC53450.2021.9567767
https://doi.org/10.23919/VLSICircuits52068.2021.9492347
https://doi.org/10.1145/1065010.1065036
https://proceedings.mlr.press/v32/graves14.html
https://proceedings.mlr.press/v32/graves14.html

150

plexity In Reverse Automatic Differentiation. Optimization Methods and Software 1 (04

1994). https://doi.org/10.1080/10556789208805505

Andreas Griewank and Andrea Walther. 1998. Treeverse: An Implementation of Check-

pointing for the Reverse or Adjoint Mode of Computational Differentiation. (03 1998).

Andreas Griewank and Andrea Walther. 2000. Algorithm 799: Revolve: An Implementation

of Checkpoint for the Reverse or Adjoint Mode of Computational Differentiation. ACM

Trans. Math. Software 26, 1 (mar 2000), 19–45. http://doi.acm.org/10.1145/347837.

347846

José Grimm, Loïc Pottier, and Nicole Rostaing-Schmidt. 1996. Optimal Time and Minimum

Space-Time Product for Reversing a Certain Class of Programs. Technical Report RR-

2794. INRIA. https://hal.inria.fr/inria-00073896

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. 2016.

Memory-Efficient Backpropagation Through Time. CoRR abs/1606.03401 (2016).

arXiv:1606.03401 http://arxiv.org/abs/1606.03401

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. 2015. The

SeaHorn Verification Framework. In Proceedings of the 27th International Conference on

Computer Aided Verification (CAV 2015) (Lecture Notes in Computer Science), Daniel

Kroening and Corina S. Pasareanu (Eds.), Vol. 9206. Springer, Berlin, Heidelberg, 343–

361. https://doi.org/10.1007/978-3-319-21690-4_20

Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret Martonosi.

2016. Graphicionado: A High-Performance and Energy-Efficient Accelerator for Graph

Analytics. In Proceedings of the 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO-49). IEEE Press, New York, NY, USA, Article 56, 13 pages.

Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov, Ben-

jamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. 2010. Under-

https://doi.org/10.1080/10556789208805505
http://doi.acm.org/10.1145/347837.347846
http://doi.acm.org/10.1145/347837.347846
https://hal.inria.fr/inria-00073896
http://arxiv.org/abs/1606.03401
https://doi.org/10.1007/978-3-319-21690-4_20

151

standing Sources of Inefficiency in General-Purpose Chips. In Proceedings of the 37th An-

nual International Symposium on Computer Architecture (ISCA ’10). Association for Com-

puting Machinery, New York, NY, USA, 37–47. https://doi.org/10.1145/1815961.

1815968

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and

William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep Neural

Network. In Proceedings of the 43rd International Symposium on Computer Architecture

(ISCA ’16). IEEE Press, New York, NY, USA, 243–254. https://doi.org/10.1109/

ISCA.2016.30

Laurent Hascoet and Mauricio Araya-Polo. 2006. Enabling user-driven Checkpointing strate-

gies in Reverse-mode Automatic Differentiation. arXiv:cs.DS/cs/0606042

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016a. Deep Residual Learning

for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE Computer Society, New York, NY, USA, 770–778.

https://doi.org/10.1109/CVPR.2016.90

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016b. Identity Mappings in

Deep Residual Networks. In Computer Vision - ECCV 2016 - 14th European Confer-

ence, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV. 630–645.

https://doi.org/10.1007/978-3-319-46493-0_38

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code fragments. In In

Proc. USENIX Security. 445–458.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient Convolutional

Neural Networks for Mobile Vision Applications. arXiv:cs.CV/1704.04861 http://arxiv.

org/abs/1704.04861

https://doi.org/10.1145/1815961.1815968
https://doi.org/10.1145/1815961.1815968
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

152

Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike He, Thierry Tambe, Gus Henry Smith,

Akash Gaonkar, Vishal Canumalla, Gu-Yeon Wei, Aarti Gupta, Zachary Tatlock, and

Sharad Malik. 2022. Specialized Accelerators and Compiler Flows: Replacing Accelerator

APIs with a Formal Software/Hardware Interface. arXiv:cs.AR/2203.00218

Bo-Yuan Huang, Hongce Zhang, Aarti Gupta, and Sharad Malik. 2019. ILAng: A Modeling

and Verification Platform for SoCs Using Instruction-Level Abstractions. In Tools and

Algorithms for the Construction and Analysis of Systems, Tomáš Vojnar and Lijun Zhang

(Eds.). Springer International Publishing, Cham, 351–357.

Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta, and

Sharad Malik. 2018a. Instruction-Level Abstraction (ILA): A Uniform Specification for

System-on-Chip (SoC) Verification. ACM Trans. Des. Autom. Electron. Syst. 24, 1, Article

Article 10 (Dec. 2018), 24 pages. https://doi.org/10.1145/3282444

Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta, and

Sharad Malik. 2018b. Instruction-Level Abstraction (ILA): A Uniform Specification for

System-on-Chip (SoC) Verification. ACM Trans. Des. Autom. Electron. Syst. 24, 1, Article

10 (Dec. 2018), 24 pages. https://doi.org/10.1145/3282444

Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. SwapAdvisor: Pushing Deep Learning

Beyond the GPU Memory Limit via Smart Swapping. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS ’20). Association for Computing Machinery, New York, NY,

USA, 1341–1355. https://doi.org/10.1145/3373376.3378530

Mike Innes. 2018. Flux: Elegant Machine Learning with Julia. Journal of Open Source

Software (2018). https://doi.org/10.21105/joss.00602

Mike Innes, David Barber, Tim Besard, James Bradburyand Valentin Churavy, Simon

Danisch, Alan Edelman, Stefan Karpinski, Jon Malmaud, Jarrett Revels, Viral Shah, Pon-

https://doi.org/10.1145/3282444
https://doi.org/10.1145/3282444
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.21105/joss.00602

153

tus Stenetorp, and Deniz Yuret. 2017. On Machine Learning and Programming Languages.

https://julialang.org/blog/2017/12/ml&pl.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer,

Ion Stoica, and Joseph E. Gonzalez. 2019. Checkmate: Breaking the Memory Wall with

Optimal Tensor Rematerialization. arXiv:cs.LG/1910.02653

Ranjit Jhala and Kenneth L. McMillan. 2001. Microarchitecture Verification by Composi-

tional Model Checking. In Computer Aided Verification, Gérard Berry, Hubert Comon,

and Alain Finkel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 396–410.

Tianyu Jia, Yuhao Ju, and Jie Gu. 2020. 31.3 A Compute-Adaptive Elastic Clock-Chain

Technique with Dynamic Timing Enhancement for 2D PE-Array-Based Accelerators. In

Proceedings of the 2020 IEEE International Solid- State Circuits Conference (ISSCC

2020). IEEE, New York, NY, USA, 482–484. https://doi.org/10.1109/ISSCC19947.

2020.9063062

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken.

2019. TASO: Optimizing Deep Learning Computation with Automatic Generation of

Graph Substitutions. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles (SOSP ’19). Association for Computing Machinery, New York, NY, USA, 47–62.

https://doi.org/10.1145/3341301.3359630

Rajeev Joshi, Greg Nelson, and Yunhong Zhou. 2006. Denali: A Practical Algorithm for

Generating Optimal Code. ACM Trans. Program. Lang. Syst. 28, 6 (Nov. 2006), 967–989.

https://doi.org/10.1145/1186632.1186633

Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James Laudon,

Cliff Young, and David Patterson. 2020. A Domain-Specific Supercomputer for Training

Deep Neural Networks. Commun. ACM 63, 7 (jun 2020), 67–78. https://doi.org/10.

1145/3360307

https://julialang.org/blog/2017/12/ml&pl
https://doi.org/10.1109/ISSCC19947.2020.9063062
https://doi.org/10.1109/ISSCC19947.2020.9063062
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/1186632.1186633
https://doi.org/10.1145/3360307
https://doi.org/10.1145/3360307

154

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ramin-

der Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc

Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,

Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hag-

mann, Richard C. Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz,

Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen

Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,

Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran

Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark

Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Amir Salek, Emad Sama-

diani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy

Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Va-

sudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-

Datacenter Performance Analysis of a Tensor Processing Unit. CoRR abs/1704.04760

(2017). arXiv:1704.04760 http://arxiv.org/abs/1704.04760

Sukwon Kim and Vin Sharma. 2019. AWS launches open source Neo-AI project to accelerate

ML deployments on edge devices. https://aws.amazon.com/blogs/machine-learning/

aws-launches-open-source-neo-ai-project-to-accelerate-ml-deployments-on-edge-devices/

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared

Roesch, Tianqi Chen, and Zachary Tatlock. 2021. Dynamic Tensor Rematerialization.

In International Conference on Learning Representations. https://openreview.net/

forum?id=Vfs_2RnOD0H

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient Trans-

former. In International Conference on Learning Representations. https://openreview.

net/forum?id=rkgNKkHtvB

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-based model checking for

http://arxiv.org/abs/1704.04760
https://aws.amazon.com/blogs/machine-learning/aws-launches-open-source-neo-ai-project-to-accelerate-ml-deployments-on-edge-devices/
https://aws.amazon.com/blogs/machine-learning/aws-launches-open-source-neo-ai-project-to-accelerate-ml-deployments-on-edge-devices/
https://openreview.net/forum?id=Vfs_2RnOD0H
https://openreview.net/forum?id=Vfs_2RnOD0H
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB

155

recursive programs. Formal Methods Syst. Des. 48, 3 (2016), 175–205. https://doi.org/

10.1007/s10703-016-0249-4

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifica-

tion with Deep Convolutional Neural Networks. In Advances in Neural Information

Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-

berger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A

Verified Implementation of ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL ’14). Association for Computing

Machinery, New York, NY, USA, 179–191. https://doi.org/10.1145/2535838.2535841

Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. 2019. Efficient

Rematerialization for Deep Networks. In Advances in Neural Information Processing Sys-

tems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett

(Eds.). Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/

file/ffe10334251de1dc98339d99ae4743ba-Paper.pdf

Mitsuru Kusumoto, Takuya K Inoue, Gentaro Watanabe, Takuya Akiba, and Masanori

Koyama. 2019. A Graph Theoretic Framework of Recomputation Algorithms for Memory-

Efficient Backpropagation. In NeurIPS.

Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason Cong,

and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming Infrastructure for

Software-Defined Reconfigurable Computing. In Proceedings of the 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA ’19). Association

for Computing Machinery, New York, NY, USA, 242–251. https://doi.org/10.1145/

3289602.3293910

https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/s10703-016-0249-4
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1145/2535838.2535841
https://proceedings.neurips.cc/paper/2019/file/ffe10334251de1dc98339d99ae4743ba-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ffe10334251de1dc98339d99ae4743ba-Paper.pdf
https://doi.org/10.1145/3289602.3293910
https://doi.org/10.1145/3289602.3293910

156

Yi-Hsiang Lai, Ecenur Ustun, Shaojie Xiang, Zhenman Fang, Hongbo Rong, and Zhiru

Zhang. 2021. Programming and Synthesis for Software-Defined FPGAAcceleration: Status

and Future Prospects. ACM Trans. Reconfigurable Technol. Syst. 14, 4, Article 17 (Sept.

2021), 39 pages. https://doi.org/10.1145/3469660

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation. In Proceedings of the International Symposium on Code

Generation and Optimization: Feedback-directed and Runtime Optimization (CGO ’04).

IEEE Computer Society, Washington, DC, USA, 75–. http://dl.acm.org/citation.

cfm?id=977395.977673

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques A. Pien-

aar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021.

MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. In Proceedings

of the IEEE/ACM International Symposium on Code Generation and Optimization (CGO

’21), Jae W. Lee, Mary Lou Soffa, and Ayal Zaks (Eds.). IEEE, New York, NY, USA, 2–14.

https://doi.org/10.1109/CGO51591.2021.9370308

Yann LeCun. 2018. Untitled. Retrieved Mar. 2, 2020 from https://www.facebook.com/

yann.lecun/posts/10155003011462143

Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy for in-

creasing greybox fuzz testing coverage. Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering (Sep 2018). https://doi.org/10.1145/

3238147.3238176

Xavier Leroy. 2006. Formal Certification of a Compiler Back-End or: Programming a Com-

piler with a Proof Assistant. In Conference Record of the 33rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’06). Association for Com-

puting Machinery, New York, NY, USA, 42–54. https://doi.org/10.1145/1111037.

1111042

https://doi.org/10.1145/3469660
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/CGO51591.2021.9370308
https://www.facebook.com/yann.lecun/posts/10155003011462143
https://www.facebook.com/yann.lecun/posts/10155003011462143
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1111037.1111042

157

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018. Fuzzing:

State of the Art. IEEE Transactions on Reliability 67, 3 (Sept. 2018), 1199–1218. https:

//doi.org/10.1109/tr.2018.2834476

Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. 2022a.

Verified Tensor-Program Optimization via High-Level Scheduling Rewrites. Proc. ACM

Program. Lang. 6, POPL, Article 55 (jan 2022), 28 pages. https://doi.org/10.1145/

3498717

Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022b. Coverage-

Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation. arXiv:cs.SE/2202.09947

Steven Lyubomirsky. 2022. [RFC] Type-Directed Relay Fuzzing Library. https://discuss.

tvm.apache.org/t/rfc-type-directed-relay-fuzzing-library/12234

Steven Lyubomirsky, Michael Flanders, and Edward Misback. 2021. Fuzzing TVM Relay.

https://www.youtube.com/watch?v=JRlqfFs_NMs TVMCon.

Panagiotis Manolios and Sudarshan K. Srinivasan. 2008. A Refinement-Based Compositional

Reasoning Framework for Pipelined Machine Verification. IEEE Trans. Very Large Scale

Integr. Syst. 16, 4 (2008), 353–364. https://doi.org/10.1109/TVLSI.2008.918120

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. 2019.

The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From

Natural Supervision. In International Conference on Learning Representations. https:

//openreview.net/forum?id=rJgMlhRctm

Henry Massalin. 1987. Superoptimizer: A Look at the Smallest Program. In Proceedings of

the Second International Conference on Architectual Support for Programming Languages

and Operating Systems (ASPLOS II). IEEE Computer Society Press, Washington, DC,

USA, 122–126. https://doi.org/10.1145/36206.36194

https://doi.org/10.1109/tr.2018.2834476
https://doi.org/10.1109/tr.2018.2834476
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3498717
https://discuss.tvm.apache.org/t/rfc-type-directed-relay-fuzzing-library/12234
https://discuss.tvm.apache.org/t/rfc-type-directed-relay-fuzzing-library/12234
https://www.youtube.com/watch?v=JRlqfFs_NMs
https://doi.org/10.1109/TVLSI.2008.918120
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://doi.org/10.1145/36206.36194

158

MegEngine 2021. Reduce GPU memory usage by Dynamic Tensor Re-

materialization. https://github.com/MegEngine/MegEngine/wiki/

Reduce-GPU-memory-usage-by-Dynamic-Tensor-Rematerialization accessed Apr.

6, 2022.

Erik Meijer. 2018. Behind Every Great Deep Learning Framework is an Even Greater Pro-

gramming Languages Concept (Keynote). In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering (ESEC/FSE 2018). Association for Computing Machinery,

New York, NY, USA, 1. https://doi.org/10.1145/3236024.3280855

David Menendez and Santosh Nagarakatte. 2017. Alive-Infer: Data-Driven Precondi-

tion Inference for Peephole Optimizations in LLVM. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI

2017). Association for Computing Machinery, New York, NY, USA, 49–63. https:

//doi.org/10.1145/3062341.3062372

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016. Pointer Sentinel

Mixture Models. arXiv:cs.CL/1609.07843

Robin Milner, Mads Tofte, and David Macqueen. 1997. The Definition of Standard ML.

MIT Press, Cambridge, MA, USA.

Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin Zheng, Josh

Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2019. A

Hardware–Software Blueprint for Flexible Deep Learning Specialization. IEEE Micro 39,

5 (2019), 8–16. https://doi.org/10.1109/MM.2019.2928962

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan

Grossman, and Zachary Tatlock. 2020. Synthesizing Structured CAD Models with Equal-

ity Saturation and Inverse Transformations. In Proceedings of the 41st ACM SIGPLAN

https://github.com/MegEngine/MegEngine/wiki/Reduce-GPU-memory-usage-by-Dynamic-Tensor-Rematerialization
https://github.com/MegEngine/MegEngine/wiki/Reduce-GPU-memory-usage-by-Dynamic-Tensor-Rematerialization
https://doi.org/10.1145/3236024.3280855
https://doi.org/10.1145/3062341.3062372
https://doi.org/10.1145/3062341.3062372
https://doi.org/10.1109/MM.2019.2928962

159

Conference on Programming Language Design and Implementation (PLDI 2020). Asso-

ciation for Computing Machinery, New York, NY, USA, 31–44. https://doi.org/10.

1145/3385412.3386012

Chandrakana Nandi, MaxWillsey, Amy Zhu, Yisu RemyWang, Brett Saiki, Adam Anderson,

Adriana Schulz, Dan Grossman, and Zachary Tatlock. 2021. Rewrite Rule Inference Using

Equality Saturation. Proc. ACM Program. Lang. 5, OOPSLA, Article 119 (oct 2021),

28 pages. https://doi.org/10.1145/3485496

Pandu Nayak. 2019. Understanding searches better than ever before. https://blog.google/

products/search/search-language-understanding-bert/ Accessed Apr. 4, 2022.

Greg Nelson. 1981. Techniques for Program Verification. Ph.D. Dissertation. University of

California at Berkeley.

Greg Nelson and Derek C. Oppen. 1980. Fast Decision Procedures Based on Congruence

Closure. J. ACM 27, 2 (April 1980), 356–364. https://doi.org/10.1145/322186.322198

Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib Kamil.

2020. Verifying and Improving Halide’s Term Rewriting System with Program Synthesis.

Proc. ACM Program. Lang. 4, OOPSLA, Article 166 (Nov. 2020), 28 pages. https:

//doi.org/10.1145/3428234

Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-Producing Congruence Closure. In

Proceedings of the 16th International Conference on Term Rewriting and Applications

(RTA 2005) (Lecture Notes in Computer Science), Jürgen Giesl (Ed.), Vol. 3467. Springer,

Berlin, Heidelberg, 453–468. https://doi.org/10.1007/978-3-540-32033-3_33

R. Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high level specifica-

tions. In Proceedings. Second ACM and IEEE International Conference on Formal Methods

and Models for Co-Design, 2004. MEMOCODE ’04. 69–70. https://doi.org/10.1109/

MEMCOD.2004.1459818

https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3485496
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/3428234
https://doi.org/10.1145/3428234
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818

160

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021. DNNFusion:

Accelerating Deep Neural Networks Execution with Advanced Operator Fusion. In Pro-

ceedings of the 42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation (PLDI 2021). Association for Computing Machinery, New

York, NY, USA, 883–898. https://doi.org/10.1145/3453483.3454083

Christopher Olah. 2015a. Calculus on Computational Graphs: Backpropagation. Retrieved

Mar. 2, 2020 from http://colah.github.io/posts/2015-08-Backprop/

Christopher Olah. 2015b. Neural Networks, Types, and Functional Programming. Retrieved

Mar. 2, 2020 from http://colah.github.io/posts/2015-09-NN-Types-FP/

ONNX 2019. ONNX: Open Neural Network Exchange. Retrieved Apr. 21, 2021 from

https://onnx.ai/

Jun-Seok Park, Jun-Woo Jang, Heonsoo Lee, Dongwoo Lee, Sehwan Lee, Hanwoong Jung,

Seungwon Lee, Suknam Kwon, Kyung-Ah Jeong, Joon-Ho Song, SukHwan Lim, and In-

yup Kang. 2021. 9.5 A 6K-MAC Feature-Map-Sparsity-Aware Neural Processing Unit in

5nm Flagship Mobile SoC. In Proceedings of the IEEE International Solid-State Circuits

Conference (ISSCC 2021). IEEE, New York, NY, USA, 152–154. https://doi.org/10.

1109/ISSCC42613.2021.9365928

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-

Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic

differentiation in PyTorch. (2017). https://openreview.net/pdf?id=BJJsrmfCZ

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas

Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019a. PyTorch: An Impera-

tive Style, High-Performance Deep Learning Library. arXiv:cs.LG/1912.01703

https://doi.org/10.1145/3453483.3454083
http://colah.github.io/posts/2015-08-Backprop/
http://colah.github.io/posts/2015-09-NN-Types-FP/
https://onnx.ai/
https://doi.org/10.1109/ISSCC42613.2021.9365928
https://doi.org/10.1109/ISSCC42613.2021.9365928
https://openreview.net/pdf?id=BJJsrmfCZ

161

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-

dreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019b. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. arXiv:cs.LG/1912.01703

https://arxiv.org/abs/1912.01703

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Hung Le, Chen Liang, Lluis-Miquel

Munguia, Daniel Rothchild, David So, Maud Texier, and Jeffrey Dean. 2022. The Carbon

Footprint of Machine Learning Training Will Plateau, Then Shrink. (3 2022). https:

//doi.org/10.36227/techrxiv.19139645.v3

Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode AD in a Functional

Framework: Lambda the Ultimate Backpropagator. ACM Trans. Program. Lang. Syst.

30, 2, Article 7 (March 2008), 36 pages. https://doi.org/10.1145/1330017.1330018

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang, and Xue-

hai Qian. 2020. Capuchin: Tensor-Based GPUMemory Management for Deep Learning. In

Proceedings of the Twenty-Fifth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’20). Association for Computing

Machinery, New York, NY, USA, 891–905. https://doi.org/10.1145/3373376.3378505

Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala. 2021.

Effective Simulation and Debugging for a High-Level Hardware Language Using Software

Compilers. In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS 2021). Association

for Computing Machinery, New York, NY, USA, 789–803. https://doi.org/10.1145/

3445814.3446720

PyTorch 2020. Word-level language modeling RNN. Retrieved Nov. 18, 2021 from https:

//github.com/pytorch/examples/tree/master/word_language_model

https://arxiv.org/abs/1912.01703
https://doi.org/10.36227/techrxiv.19139645.v3
https://doi.org/10.36227/techrxiv.19139645.v3
https://doi.org/10.1145/1330017.1330018
https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1145/3445814.3446720
https://doi.org/10.1145/3445814.3446720
https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model

162

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,

and Saman Amarasinghe. 2013. Halide: A Language and Compiler for Optimizing Paral-

lelism, Locality, and Recomputation in Image Processing Pipelines. In Proceedings of the

34th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ’13). ACM, New York, NY, USA, 519–530. https://doi.org/10.1145/2491956.

2462176

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO: Memory

optimizations Toward Training Trillion Parameter Models. SC20: International Confer-

ence for High Performance Computing, Networking, Storage and Analysis (Nov 2020).

https://doi.org/10.1109/sc41405.2020.00024

Norman Ramsey and João Dias. 2011. Resourceable, Retargetable, Modular Instruction Se-

lection Using a Machine-Independent, Type-Based Tiling of Low-Level Intermediate Code.

In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’11). Association for Computing Machinery, New York,

NY, USA, 575–586. https://doi.org/10.1145/1926385.1926451

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu

Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks. 2016. Minerva:

Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators. In Proceedings

of the 43rd International Symposium on Computer Architecture (ISCA ’16). IEEE Press,

New York, NY, USA, 267–278. https://doi.org/10.1109/ISCA.2016.32

Jared Roesch, Steven Lyubomirsky, Marisa Kirisame, Josh Pollock, Logan Weber, Ziheng

Jiang, Tianqi Chen, Thierry Moreau, and Zachary Tatlock. 2019. Relay: A High-Level IR

for Deep Learning. CoRR abs/1904.08368 (2019). arXiv:1904.08368 http://arxiv.org/

abs/1904.08368

Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame, Tianqi

Chen, and Zachary Tatlock. 2018. Relay: A New IR for Machine Learning Frameworks.

https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1109/sc41405.2020.00024
https://doi.org/10.1145/1926385.1926451
https://doi.org/10.1109/ISCA.2016.32
http://arxiv.org/abs/1904.08368
http://arxiv.org/abs/1904.08368

163

In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning

and Programming Languages (MAPL 2018). Association for Computing Machinery, New

York, NY, USA, 58–68. https://doi.org/10.1145/3211346.3211348

Jared G. Roesch. 2020. Principled Optimization of Dynamic Neural Networks. Ph.D. Dis-

sertation. University of Washington.

Davide Rossi, Francesco Conti, Manuel Eggimann, Stefan Mach, Alfio Di Mauro, Marco

Guermandi, Giuseppe Tagliavini, Antonio Pullini, Igor Loi, Jie Chen, Eric Flamand, and

Luca Benini. 2021. 4.4 A 1.3TOPS/W @ 32GOPS Fully Integrated 10-Core SoC for IoT

End-Nodes with 1.7µW Cognitive Wake-Up From MRAM-Based State-Retentive Sleep

Mode. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC

2021). IEEE, New York, NY, USA, 60–62. https://doi.org/10.1109/ISSCC42613.2021.

9365939

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James

Hegeman, Roman Levenstein, Bert Maher, Satish Nadathur, Jakob Olesen, Jongsoo

Park, Artem Rakhov, and Misha Smelyanskiy. 2018. Glow: Graph Lowering Com-

piler Techniques for Neural Networks. CoRR abs/1805.00907 (2018). arXiv:1805.00907

https://arxiv.org/abs/1805.00907

D. Saito, T. Kobayashi, Hiroki Koga, Nicolo Ronchi, K. Banerjee, Y. Shuto, Jun Okuno,

K. Konishi, Luca Di Piazza, A. Mallik, Jan Van Houdt, M. Tsukamoto, K. Ohkuri, Taku

Umebayashi, and Takayuki Ezaki. 2021. Analog In-memory Computing in FeFET-based

1T1R Array for Edge AI Applications. In Proceedings of the 2021 Symposium on VLSI Cir-

cuits. IEEE, New York, NY, USA, 1–2. https://doi.org/10.23919/VLSICircuits52068.

2021.9492479

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.

2019. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv:cs.CV/1801.04381

https://doi.org/10.1145/3211346.3211348
https://doi.org/10.1109/ISSCC42613.2021.9365939
https://doi.org/10.1109/ISSCC42613.2021.9365939
https://arxiv.org/abs/1805.00907
https://doi.org/10.23919/VLSICircuits52068.2021.9492479
https://doi.org/10.23919/VLSICircuits52068.2021.9492479

164

Colin Schmidt, John Charles Wright, Zhongkai Wang, Eric Chang, Albert J. Ou, Woo-

Rham Bae, Sean Huang, Anita Flynn, Brian C. Richards, Krste Asanovic, Elad Alon,

and Borivoje Nikolic. 2021. 4.3 An Eight-Core 1.44GHz RISC-V Vector Machine in 16nm

FinFET. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC

2021). IEEE, New York, NY, USA, 58–60. https://doi.org/10.1109/ISSCC42613.2021.

9365789

Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, and Philipp Krae-

henbuehl. 2021. Memory Optimization for Deep Networks. In International Conference

on Learning Representations. https://openreview.net/forum?id=bnY0jm4l59

Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma, Zachary

Tatlock, and Yida Wang. 2021. Nimble: Efficiently Compiling Dynamic Neural Networks

for Model Inference. In Proceedings of Machine Learning and Systems, A. Smola, A. Di-

makis, and I. Stoica (Eds.), Vol. 3. 208–222. https://proceedings.mlsys.org/paper/

2021/file/4e732ced3463d06de0ca9a15b6153677-Paper.pdf

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy

Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis

Hassabis. 2017. Mastering the game of Go without human knowledge. Nature 550, 7676

(01 Oct 2017), 354–359. https://doi.org/10.1038/nature24270

Jeffrey Mark Siskind and Barak A. Pearlmutter. 2018. Divide-and-conquer checkpointing for

arbitrary programs with no user annotation. Optimization Methods and Software 33, 4-6

(Sep 2018), 1288–1330. https://doi.org/10.1080/10556788.2018.1459621

Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan,

Michael Taylor, Luis Ceze, and Zachary Tatlock. 2021. Pure Tensor Program Rewriting via

Access Patterns (Representation Pearl). In Proceedings of the 5th ACM SIGPLAN Inter-

https://doi.org/10.1109/ISSCC42613.2021.9365789
https://doi.org/10.1109/ISSCC42613.2021.9365789
https://openreview.net/forum?id=bnY0jm4l59
https://proceedings.mlsys.org/paper/2021/file/4e732ced3463d06de0ca9a15b6153677-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/4e732ced3463d06de0ca9a15b6153677-Paper.pdf
https://doi.org/10.1038/nature24270
https://doi.org/10.1080/10556788.2018.1459621

165

national Symposium on Machine Programming (MAPS 2021). Association for Computing

Machinery, New York, NY, USA, 21–31. https://doi.org/10.1145/3460945.3464953

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,

Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton

Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad

Shoeybi, Yuxiong He, Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. 2022.

Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale

Generative Language Model. arXiv:cs.CL/2201.11990

Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang, and

Christopher Ré. 2019. Low-Memory Neural Network Training: A Technical Report. CoRR

abs/1904.10631 (2019). arXiv:1904.10631 http://arxiv.org/abs/1904.10631

Bert Speelpenning. 1980. Compiling Fast Partial Derivatives of Functions given by Algo-

rithms. Ph.D. Dissertation. USA. AAI8017989.

Pramod Subramanyan, Bo-Yuan Huang, Yakir Vizel, Aarti Gupta, and Sharad Malik. 2018.

Template-Based Parameterized Synthesis of Uniform Instruction-Level Abstractions for

SoC Verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37, 8 (2018),

1692–1705. https://doi.org/10.1109/TCAD.2017.2764482

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved Seman-

tic Representations From Tree-Structured Long Short-Term Memory Networks. CoRR

abs/1503.00075 (2015). arXiv:1503.00075 http://arxiv.org/abs/1503.00075

Thierry Tambe, En-Yu Yang, Glenn G. Ko, Yuji Chai, Coleman Hooper, Marco Do-

nato, Paul N. Whatmough, Alexander M. Rush, David Brooks, and Gu-Yeon Wei.

2021. 9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-Text La-

tency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence DNN

Speech Recognition in 16nm FinFET. In Proceedings of the IEEE International Solid-

https://doi.org/10.1145/3460945.3464953
http://arxiv.org/abs/1904.10631
https://doi.org/10.1109/TCAD.2017.2764482
http://arxiv.org/abs/1503.00075

166

State Circuits Conference (ISSCC ’21). IEEE, New York, NY, USA, 158–160. https:

//doi.org/10.1109/ISSCC42613.2021.9366062

Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander

Rush, David Brooks, and Gu-Yeon Wei. 2020. Algorithm-Hardware Co-Design of Adaptive

Floating-Point Encodings for Resilient Deep Learning Inference. In Proceedings of the 57th

ACM/EDAC/IEEE Design Automation Conference (DAC ’20). IEEE Press, USA, Article

51, 6 pages.

Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for Convo-

lutional Neural Networks. In Proceedings of the 36th International Conference on Ma-

chine Learning (ICML ’19), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.),

Vol. 97. PMLR, Atlanta, Georgia, USA, 6105–6114. http://proceedings.mlr.press/

v97/tan19a.html

Yu Tang, Chenyu Wang, Yufan Zhang, Yuliang Liu, Xingcheng Zhang, Linbo Qiao, Zhiquan

Lai, and Dongsheng Li. 2022. DELTA: Dynamically Optimizing GPU Memory beyond

Tensor Recomputation. arXiv:cs.LG/2203.15980

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2011. Equality Saturation: A

New Approach to Optimization. Logical Methods in Computer Science Volume 7, Issue 1

(March 2011). https://doi.org/10.2168/LMCS-7(1:10)2011

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby,

Edouard Grave, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou.

2021. ResMLP: Feedforward networks for image classification with data-efficient training.

arXiv:cs.CV/2105.03404 https://arxiv.org/abs/2105.03404

Lenny Truong, Steven Herbst, Rajsekhar Setaluri, Makai Mann, Ross G. Daly, Keyi Zhang,

Caleb Donovick, Daniel Stanley, Mark Horowitz, Clark W. Barrett, and Pat Hanra-

han. 2020. fault: A Python Embedded Domain-Specific Language for Metaprogramming

https://doi.org/10.1109/ISSCC42613.2021.9366062
https://doi.org/10.1109/ISSCC42613.2021.9366062
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.2168/LMCS-7(1:10)2011
https://arxiv.org/abs/2105.03404

167

Portable Hardware Verification Components. In Proceedings of the 32nd International Con-

ference on Computer Aided Verification (CAV 2020) (Lecture Notes in Computer Science),

Shuvendu K. Lahiri and Chao Wang (Eds.), Vol. 12224. Springer, Berlin, Heidelberg, 403–

414. https://doi.org/10.1007/978-3-030-53288-8_19

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson.

2021. Vectorization for Digital Signal Processors via Equality Saturation. Association

for Computing Machinery, New York, NY, USA, 874–886. https://doi.org/10.1145/

3445814.3446707

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,

William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor

Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions.

arXiv:1802.04730 https://arxiv.org/abs/1802.04730

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need.

arXiv:cs.CL/1706.03762

Verilator n. d.. Verilator. https://www.veripool.org/verilator/ Accessed Nov. 18, 2021.

Sahil Verma and Zhendong Su. 2020. ShapeFlow: Dynamic Shape Interpreter for TensorFlow.

arXiv:cs.LG/2011.13452

Fei Wang, Xilun Wu, Grégory M. Essertel, James M. Decker, and Tiark Rompf. 2018a.

Demystifying Differentiable Programming: Shift/Reset the Penultimate Backpropagator.

CoRR abs/1803.10228 (2018). arXiv:1803.10228 http://arxiv.org/abs/1803.10228

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin

Xu, and Tim Kraska. 2018b. Superneurons. Proceedings of the 23rd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (Feb 2018). https:

//doi.org/10.1145/3178487.3178491

https://doi.org/10.1007/978-3-030-53288-8_19
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://arxiv.org/abs/1802.04730
https://www.veripool.org/verilator/
http://arxiv.org/abs/1803.10228
https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1145/3178487.3178491

168

Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu. 2020.

SPORES. Proceedings of the VLDB Endowment 13, 12 (Aug 2020), 1919–1932. https:

//doi.org/10.14778/3407790.3407799

Richard Wei, Dan Zheng, Marc Rasi, and Bart Chrzaszcz. 2020. Differentiable Program-

ming Manifesto. Retrieved Mar. 2, 2020 from https://github.com/apple/swift/blob/

master/docs/DifferentiableProgramming.md

Xuechao Wei, Yun Liang, and Jason Cong. 2019. Overcoming Data Transfer Bottlenecks

in FPGA-Based DNN Accelerators via Layer Conscious Memory Management. In Pro-

ceedings of the 56th Annual Design Automation Conference 2019 (DAC ’19). Associa-

tion for Computing Machinery, New York, NY, USA, Article 125, 6 pages. https:

//doi.org/10.1145/3316781.3317875

Paul N. Whatmough, Sae Kyu Lee, Marco Donato, Hsea-Ching Hsueh, Sam Likun Xi, Udit

Gupta, Lillian Pentecost, Glenn G. Ko, David M. Brooks, and Gu-Yeon Wei. 2019. A

16nm 25mm2 SoC with a 54.5x Flexibility-Efficiency Range from Dual-Core Arm Cortex-

A53 to eFPGA and Cache-Coherent Accelerators. In Proceedings of the 2019 Symposium

on VLSI Circuits. IEEE, New York, NY, USA, 34. https://doi.org/10.23919/VLSIC.

2019.8778002

Deborah L. Whitfield and Mary Lou Soffa. 1997. An Approach for Exploring Code Improving

Transformations. ACM Trans. Program. Lang. Syst. 19, 6 (Nov. 1997), 1053–1084. https:

//doi.org/10.1145/267959.267960

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and

Pavel Panchekha. 2021. Egg: Fast and Extensible Equality Saturation. Proc. ACM Pro-

gram. Lang. 5, POPL, Article 23 (Jan. 2021), 29 pages. https://doi.org/10.1145/

3434304

https://doi.org/10.14778/3407790.3407799
https://doi.org/10.14778/3407790.3407799
https://github.com/apple/swift/blob/master/docs/DifferentiableProgramming.md
https://github.com/apple/swift/blob/master/docs/DifferentiableProgramming.md
https://doi.org/10.1145/3316781.3317875
https://doi.org/10.1145/3316781.3317875
https://doi.org/10.23919/VLSIC.2019.8778002
https://doi.org/10.23919/VLSIC.2019.8778002
https://doi.org/10.1145/267959.267960
https://doi.org/10.1145/267959.267960
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

169

XilinxSDK n. d.. The Xilinx Software Development Kit (XSDK). Retrieved Apr. 24, 2021

from https://www.xilinx.com/products/design-tools/embedded-software/sdk.html

Yue Xing, Bo-Yuan Huang, Aarti Gupta, and Sharad Malik. 2018. A Formal Instruction-

Level GPU Model for Scalable Verification. In Proceedings of the International Conference

on Computer-Aided Design (ICCAD ’18). Association for Computing Machinery, New

York, NY, USA, Article 130, 8 pages. https://doi.org/10.1145/3240765.3240771

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding

Bugs in C Compilers. SIGPLAN Not. 46, 6 (jun 2011), 283–294. https://doi.org/10.

1145/1993316.1993532

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy,

and Jacques Pienaar. 2021. Equality Saturation for Tensor Graph Superoptimization.

arXiv:cs.AI/2101.01332

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi

Chen, and Yunji Chen. 2016. Cambricon-x: An Accelerator for Sparse Neural Networks. In

Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-49). IEEE Press, New York, NY, USA, Article 20, 12 pages. https://doi.org/

10.1109/MICRO.2016.7783723

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali,

Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Sto-

ica. 2020. Ansor: Generating High-Performance Tensor Programs for Deep Learning.

In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI

20). USENIX Association, 863–879. https://www.usenix.org/conference/osdi20/

presentation/zheng

https://www.xilinx.com/products/design-tools/embedded-software/sdk.html
https://doi.org/10.1145/3240765.3240771
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://www.usenix.org/conference/osdi20/presentation/zheng
https://www.usenix.org/conference/osdi20/presentation/zheng

	List of Figures
	Introduction
	Motivation
	Deep Learning Definitions
	Differentiable Programming
	Runtimes for Dynamic Models: Dynamic Tensor Rematerialization
	Supporting Diverse Hardware Back-Ends: 3LA
	Organization

	Related Work
	Reducing Memory Required in Training
	Compiling to Accelerators

	Relay: A High-Level IR for Deep Learning Applications
	Design of Relay
	Design Advantage: Type-Directed Relay Fuzzing
	Summary

	Runtime Techniques: Dynamic Tensor Rematerialization
	Problem Description
	Design Overview
	Formal Bounds
	Heuristic Evaluation
	Prototype Implementation
	Summary

	Semantics-Based Hardware Search: 3LA
	Problem Description
	Overview
	The 3LA Methodology
	Prototype Implementation
	Case Studies and Evaluation
	Discussion and Future Work
	Summary

	Conclusion

